[1] 梁礼明, 陈鑫, 余洁, 等. 多尺度注意力细化视网膜分割算法[J]. 计算机工程与应用, 2023, 59(6): 212-220.
LIANG L M, CHEN X, YU J, et al. Multi-scale attention refinement retinal segmentation algorithm[J]. Computer Engineering and Applications, 2023, 59(6): 212-220.
[2] 窦智, 高浩然, 刘国奇, 等. 轻量化YOLOv8的小样本钢板缺陷检测算法[J]. 计算机工程与应用, 2024, 60(9): 90-100.
DOU Z, GAO H R, LIU G Q, et al. Small sample steel plate defect detection algorithm of lightweight YOLOv8[J]. Computer Engineering and Applications, 2024, 60(9): 90-100.
[3] 高春艳, 秦燊, 李满宏, 等. 改进YOLOv7算法的钢材表面缺陷检测研究[J]. 计算机工程与应用, 2024, 60(7): 282-291.
GAO C Y, QIN S, LI M H, et al. Research on steel surface defect detection with improved YOLOv7 algorithm[J]. Computer Engineering and Applications, 2024, 60(7): 282-291.
[4] LIANG F T, ZHOU Y, CHEN X, et al. Review of target detection technology based on deep learning[C]//Proceedings of the 5th International Conference on Control Engineering and Artificial Intelligence. New York: ACM, 2021: 132-135.
[5] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2015: 1440-1448.
[6] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[7] QIAN H, WANG H, FENG S, et al. FESSD: SSD target detection based on feature fusion and feature enhancement[J]. Journal of Real-Time Image Processing, 2023, 20(1): 2.
[8] JIANG P Y, ERGU D, LIU F Y, et al. A review of YOLO algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073.
[9] HUSSAIN M. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11(7): 677.
[10] 卢俊哲, 张铖怡, 刘世鹏, 等. 面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO[J]. 计算机工程与应用, 2023, 59(15): 318-328.
LU J Z, ZHANG C Y, LIU S P, et al. Lightweight DCN-YOLO for strip surface defect detection in complex environments[J]. Computer Engineering and Applications, 2023, 59(15): 318-328.
[11] QIN R, CHEN N, HUANG Y. EDDNet: an efficient and accurate defect detection network for the industrial edge environment[C]//Proceedings of the 2022 IEEE 22nd International Conference on Software Quality, Reliability and Security. Piscataway: IEEE, 2022: 854-863.
[12] YANG L, HUANG X, REN Y, et al. Steel plate surface defect detection based on dataset enhancement and lightweight convolution neural network[J]. Machines, 2022, 10(7): 523.
[13] 梁礼明, 龙鹏威, 冯耀, 等. 改进轻量化VTG-YOLOv7-tiny的钢材表面缺陷检测[J]. 光学精密工程, 2024, 32(8): 1227-1240.
LIANG L M, LONG P W, FENG Y, et al. Improved detection of steel surface defects with lightweight VTG-YOLOv7-tiny[J]. Optical Precision Engineering, 2024, 32(8): 1227-1240.
[14] ZHOU S, ZENG Y, LI S, et al. Surface defect detection of rolled steel based on lightweight model[J]. Applied Sciences, 2022, 12(17): 8905.
[15] 蔡剑锋, 柏俊杰, 张雪, 等. 基于改进Mask R-CNN 的金属板材表面缺陷检测[J]. 重庆科技学院学报 (自然科学版), 2023, 25(2): 110-116.
CAI J F, BO J J, ZHANG X, et al. Research on surface defect recognition of metal sheet based on improved Mask R-CNN[J]. Journal of Chongqing University of Science and Technology (Natural Science Edition), 2023, 25(2): 110-116.
[16] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[17] CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 12021-12031.
[18] WAN D, LU R, SHEN S, et al. Mixed local channel attention for object detection[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106442.
[19] LI H, LI J, WEI H, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv:2206.02424, 2022.
[20] 曹义亲, 伍铭林, 徐露. 基于改进YOLOv5算法的钢材表面缺陷检测[J]. 图学学报, 2023, 44(2): 335-345.
CAO Y Q, WU M L, XU L. Steel surface defect detection based on improved YOLOv5 algorithm[J]. Journal of Graphics, 2023, 44(2): 335-345.
[21] 赵林熔, 甄国涌, 储成群, 等. 基于CBE-YOLOv5的钢材表面缺陷检测方法[J]. 电子测量技术, 2023, 46(15): 73-80.
ZHAO L R, ZHEN G Y, CHU C Q, et al. Detection method of steel surface defects based on CBE-YOLOv5[J]. Electronic Measurement Technology, 2023, 46(15): 73-80.
[22] GUO Z, WANG C, YANG G, et al. MSFT-YOLO: improved YOLOv5 based on transformer for detecting defects of steel surface[J]. Sensors, 2022, 22(9): 3467. |