[1] 钟自创. 我国无纺布主流技术与其应用研究[J]. 造纸装备及材料, 2020, 49(2): 76.
ZHONG Z C. Research on mainstream nonwoven technologies and their applications in China[J]. Papermaking Equipment and Materials, 2020, 49(2): 76.
[2] 吕文涛, 林琪琪, 钟佳莹, 等. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11): 197-206.
Lü W T, LIN Q Q, ZHONG J Y, et al. Research progress of image processing technology for fabric defect detection[J]. Journal of Textile Research, 2021, 42(11): 197-206.
[3] ABOUELELA A, ABBAS H M, ELSEEB H, et al. Automated vision system for localizing structural defects in textile fabrics[J]. Pattern Recognition Letters, 2005, 26(10): 1435-1443.
[4] LI C, GAO G, LIU Z, et al. Defect detection for patterned fabric images based on GHOG and low-rank decomposition[J]. IEEE Access, 2019, 7: 83962-83973.
[5] GUSTIAN D A, ROHMAH N L, SHIDI K G F, et al. Classification of troso fabric using SVM-RBF multi-class method with GLCM and PCA feature extraction[C]//Proceedings of the 2019 International Seminar on Application for Technology of Information and Communication (iSemantic), 2019: 7-11.
[6] REBHI A, ABID S, FNAIECH F. Fabric defect detection using local homogeneity and morphological image processing[C]//Proceedings of the 2016 International Image Processing, Applications and Systems (IPAS), 2016: 1-5.
[7] PAN Z, HE N, JIAO Z. FFT used for fabric defect detection based on CUDA[C]//Proceedings of the 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 2017: 2104-2107.
[8] LI Y H, ZHOU X Y. Fabric defect detection with optimal Gabor wavelet based on radon[C]//Proceedings of the 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), 2020: 788-793.
[9] 曹桂红, 欧阳颖, 国庆, 等. 基于SIFT算法的织物疵点检测[J]. 信息记录材料, 2019, 20(9): 79-81.
CAO G H, OUYANG Y, GUO Q, et al. Fabric defect detection based on SIFT algorithm[J]. Information Recording Materials, 2019, 20(9): 79-81.
[10] 杨晓波. 基于GMRF模型的统计特征畸变织物疵点识别[J]. 纺织学报, 2013, 34(4): 137-142.
YANG X B. Fabric defect detection of statistic aberration feature based on GMRF model[J]. Journal of Textile Research, 2013, 34(4): 137-142.
[11] 陶显, 侯伟, 徐德. 基于深度学习的表面缺陷检测方法综述[J]. 自动化学报, 2021, 47(5): 1017-1034.
TAO X, HOU W, XU D. A survey of surface defect detection methods based on deep learning[J]. Journal of Automatica Sinica, 2021, 47(5): 1017-1034.
[12] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[13] 王琳毅, 白静, 李文静, 等. YOLO系列目标检测算法研究进展[J]. 计算机工程与应用, 2023, 59(14): 15-29.
WANG L Y, BAI J, LI W J, et al. Research progress of YOLO series target detection algorithms[J]. Computer Engineering and Applications, 2023, 59(14): 15-29.
[14] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, 2016: 21-37.
[15] 邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44(10): 3697-3708.
SHAO Y H, ZHANG D, CHU H Y, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics and Information Technology, 2022, 44(10): 3697-3708.
[16] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[17] CHEN J R, KAO S H, HAO H E, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 12021-12031.
[18] LI X, WANG W, HU X L, et al. Selective kernel networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 510-519.
[19] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[20] TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[21] HENDRYCKS D, GIMPEL K. Gaussian error linear units (gelus)[J]. arXiv:1606.08415, 2016.
[22] GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 2022, 8(3): 331-368. |