[1] 孙虹霞. 轮胎 X 光图像缺陷检测算法研究[D]. 合肥: 中国科学技术大学, 2021.
SUN H X. Research on tire X-ray image defects detection algorithms[D]. Hefei:University of Science and Technology of China, 2021.
[2] ZENG Z, LIU B, FU J, et al. Reference-based defect detection network[J]. IEEE Transactions on Image Processing, 2021, 30: 6637-6647.
[3] SUN H, GU N, LIN C. Tire impurity defect detection based on grayscale correction and threading method[C]//2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS), 2021: 229-233.
[4] YI X, PENG C, YANG M, et al. Tire body defect detection: from the perspective of industrial applications[M]//Intelligent equipment, robots, and vehicles. Singapore: Springer, 2021: 743-752.
[5] PANG G, SHEN C, CAO L, et al. Deep learning for anomaly detection: a review[J]. ACM Computing Surveys (CSUR), 2021, 54(2): 1-38.
[6] WANG Y, ZHANG Y, ZHENG L, et al. Unsupervised learning with generative adversarial network for automatic tire defect detection from X-ray images[J]. Sensors, 2021, 21(20): 6773.
[7] ZHENG Z, SHEN J, SHAO Y, et al. Tire defect classification using a deep convolutional sparse-coding network[J]. Measurement Science and Technology, 2021, 32(5): 055401.
[8] CHENG J, LIU A, TIAN T. Tire defect detection algorithm based on multi-task learning and normal feature fusion[C]//International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2021), 2022: 415-422.
[9] LI Y, FAN B, ZHANG W, et al. TireNet: a high recall rate method for practical application of tire defect type classification[J]. Future Generation Computer Systems, 2021, 125: 1-9.
[10] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[11] ELHASSAN M A M, YANG C, HUANG C, et al. S2-FPN: scale-ware strip attention guided feature pyramid network for real-time semantic segmentation[J]. arXiv:2206.07298, 2022.
[12] TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[13] ZHAO G, GE W, YU Y. GraphFPN: graph feature pyramid network for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2763-2772.
[14] JIN Z, YU D, SONG L, et al. You should look at all objects[C]//European Conference on Computer Vision. Cham: Springer, 2022: 332-349.
[15] MA N, ZHANG X, LIU M, et al. Activate or not: learning customized activation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8032-8042.
[16] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[17] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 801-818.
[18] LIU S, HUANG D. Receptive field block net for accurate and fast object detection[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 385-400.
[19] 陈灏然, 彭力, 李文涛, 等. 加权网络下的小目标检测算法[J]. 计算机科学与探索, 2022, 16(9):2143-2150.
CHEN H R, PENG L, LI W T, et al Small object detection algorithm based on weighted network [J] Journal of Frontiers of Computer Science and Technology, 2022, 16(9):2143-2150.
[20] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[21] 朱炳宇, 刘朕, 张景祥. 融合Grad-CAM和卷积神经网络的COVID-19检测算法[J]. 计算机科学与探索, 2022, 16(9):2108-2120.
ZHU B Y, LIU Z, ZHANG J X. COVID-19 detection algorithm combining grad-CAM and convolutional neural network[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16 (9): 2108-2120
[22] 余震, 何留杰, 王振飞. 基于中智理论与方向α-均值的图像边缘检测算法[J]. 电子测量与仪器学报, 2020, 32(3):8-16.
YU Z, HE L J, WANG Z F. Image edge detection based on intelligence theory and direction α-mean[J]. Journal of Electronic Measurement and Instrumentation, 2020, 32(3):8-16.
[23] MICIKEVICIUS P, NARANG S, ALBEN J, et al. Mixed precision training[J]. arXiv:1710. 03740, 2017.
[24] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[25] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[26] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[J]. arXiv:2004. 10934, 2020.
[27] ZHOU X, KOLTUN V, KR?HENBüHL P. Probabilistic two-stage detection[J]. arXiv:2103.07461, 2021.
[28] DUAN K, BAI S, XIE L, et al. CenterNet++ for object detection[J]. arXiv:2204.08394, 2022.
[29] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[30] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[31] ZHAO G, GE W, YU Y. GraphFPN: graph feature pyramid network for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2763-2772.
[32] GUO C, FAN B, ZHANG Q, et al. Augfpn: improving multi-scale feature learning for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 12595-12604.
[33] LUO Y, CAO X, ZHANG J, et al. CE-FPN: enhancing channel information for object detection[J]. Multimedia Tools and Applications, 2022: 1-20.
[34] CAO J, CHEN Q, GUO J, et al. Attention-guided context feature pyramid network for object detection[J]. arXiv:2005.11475, 2020. |