[1] 苏健, 梁英波, 丁麟, 等. 碳中和目标下我国能源发展战略探讨[J]. 中国科学院院刊, 2021, 36(9): 1001-1009.
SU J, LIANG Y B, DING L, et al. Research on China’s energy development strategy under carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(9): 1001-1009.
[2] PARIDA B, INIYAN S, GOIC R. A review of solar photovoltaic technologies[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1625-1636.
[3] DHIMISH M, HOLMES V, MEHRDADI B, et al. The impact of cracks on photovoltaic power performance[J]. Journal of Science: Advanced Materials and Devices, 2017, 2(2): 199-209.
[4] HENISCH H K. Electroluminescence[J]. Reports on Progress in Physics, 1964, 27(1): 369.
[5] MANSOURI A, ZETTL M, MAYER O, et al. Defect detection in photovoltaic modules using electroluminescence imaging[C]//27th European Photovoltaic Solar Energy Conference and Exhibition, 2012: 3374-3378.
[6] FUYUKI T, KITIYANAN A. Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence[J]. Applied Physics A, 2009, 96: 189-196.
[7] SU B, CHEN H, CHEN P, et al. Deep learning-based solar-cell manufacturing defect detection with complementary attention network[J]. IEEE Transactions on Industrial Informatics, 2020, 17(6): 4084-4095.
[8] CHEN Y, DING Y, ZHAO F, et al. Surface defect detection methods for industrial products: a review[J]. Applied Sciences, 2021, 11(16): 7657.
[9] TSAI D M, WU S C, LI W C. Defect detection of solar cells in electroluminescence images using Fourier image reconstruction[J]. Solar Energy Materials and Solar Cells, 2012, 99: 250-262.
[10] ANWAR S A, ABDULLAH M Z. Micro-crack detection of multicrystalline solar cells featuring an improved anisotropic diffusion filter and image segmentation technique[J]. EURASIP Journal on Image and Video Processing, 2014, 2014: 1-17.
[11] TSAI D M, WU S C, CHIU W Y. Defect detection in solar modules using ICA basis images[J]. IEEE Transactions on Industrial Informatics, 2012, 9(1): 122-131.
[12] DEITSCH S, CHRISTLEIN V, BERGER S, et al. Automatic classification of defective photovoltaic module cells in electroluminescence images[J]. Solar Energy, 2019, 185: 455-468.
[13] TANG W, YANG Q, XIONG K, et al. Deep learning based automatic defect identification of photovoltaic module using electroluminescence images[J]. Solar Energy, 2020, 201: 453-460.
[14] HAN H, GAO C, ZHAO Y, et al. Polycrystalline silicon wafer defect segmentation based on deep convolutional neural networks[J]. Pattern Recognition Letters, 2020, 130: 234-241.
[15] LI X, YANG Q, LOU Z, et al. Deep learning based module defect analysis for large-scale photovoltaic farms[J]. IEEE Transactions on Energy Conversion, 2018, 34(1): 520-529.
[16] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[17] TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[18] LIU S, HUANG D, WANG Y. Learning spatial fusion for single-shot object detection[J]. arXiv:1911.09516, 2019.
[19] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[20] SU B, ZHOU Z, CHEN H. PVEL-AD: a large-scale open-world dataset for photovoltaic cell anomaly detection[J]. IEEE Transactions on Industrial Informatics, 2022, 19(1): 404-413.
[21] BUERHOP-LUTZ C, DEITSCH S, MAIER A, et al. A benchmark for visual identification of defective solar cells in electroluminescence imagery[C]//35th European PV Solar Energy Conference and Exhibition, 2018: 1287-1289.
[22] DEITSCH S, BUERHOP-LUTZ C, SOVETKIN E, et al. Segmentation of photovoltaic module cells in uncalibrated electroluminescence images[J]. Machine Vision and Applications, 2021, 32(4): 84.
[23] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[24] WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[25] LIU Y, SHAO Z, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[J]. arXiv:2112.05561, 2021. |