[1] HASSAN T, BETTAYEB M, AKCAY S, et al. Detecting prohibited items in X-ray images: a contour proposal learning approach[C]//Proceedings of the International Conference on Image Processing, 2020: 2016-2020.
[2] AKCAY S, BRECKON T P. An evaluation of region based object detection strategies within X-ray baggage security imagery[C]//Proceedings of the International Conference on Image Processing, 2017: 1337-1341.
[3] AKCAY S, KUNDEGORSKI M E, DEVEREUX M, et al. Transfer learning using convolutional neural networks for object classification within X-ray baggage security imagery[C]//Proceedings of the International Conference on Image Processing, 2016: 1057-1061.
[4] MERY D, SVEC E, ARIAS M, et al. Modern computer vision techniques for X-ray testing in baggage inspection[J]. IEEE Transactions on Systems, Man, and Cybernetics-Systems, 2017, 47(4): 682-692.
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the Computer Vision and Pattern Recognition, 2014: 580-587.
[6] GIRSHICK R. Fast R-CNN[J]. arXiv:1504.08083, 2015.
[7] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6): 1137-1149.
[8] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision, 2016.
[9] ZHAI S, SHANG D, WANG S, et al. DF-SSD: an improved SSD object detection algorithm based on DenseNet and feature fusion[J]. IEEE Access, 2020, 8: 24344-24357.
[10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[11] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[12] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767,2018.
[13] BOCHKOVSKIY A, WANG C, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.
10934,2020.
[14] GLENN J, ALEX S, JIRKA B, et al. ultralytics/yolov5: v6.1-YOLOv5.P6[EB/OL].[2022-02-22].https://github.com/ultralytics/yolov5.
[15] WANG H, WANG W, LIU Y. X-YOLO: a deep learning based toolset with multiple optimization strategies for contraband detection[C]//Proceedings of the ACM Turing Celebration Conference-China, 2020: 127-132.
[16] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[17] LI S, LI Y, LI Y, et al. YOLO-FIRI: improved YOLOV5 for infrared image object detection[J]. IEEE Access, 2021, 9: 141861-141875.
[18] WU B, IANDOLA F, JIN P H, et al. SqueezeDet: unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 129-137.
[19] ZHOU X, WANG D, KR?HENBüHL P. Objects as points[J]. arXiv:1904.07850,2019.
[20] WANG R J, LI X, LING C X. Pelee: a real-time object detection system on mobile devices[C]//Advances in Neural Information Processing Systems, 2018, 31: 1967-1976.
[21] AKCAY S, KUNDEGORSKI M E, WILLCOCKS C G, et al. Using deep convolutional neural network architectures for object classification and detection within X-ray baggage security imagery[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(9): 2203-2215.
[22] GAUS Y F A, BHOWMIK N, AKCAY S, et al. Evaluating the transferability and adversarial discrimination of convolutional neural networks for threat object detection and classification within X-ray security imagery[C]//2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA), 2019: 420-425.
[23] WU J, SHI H, WANG Q. Contrabands detection in X-ray screening images using YOLO model[C]//Proceedings of the 4th International Conference on Computer Science and Application Engineering, 2020.
[24] MIAO C, XIE L, WAN F, et al. SIXray: a large-scale security inspection X-Ray benchmark for prohibited item discovery in overlapping images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2119-2128.
[25] CHANG A, ZHANG Y, ZHANG S, et al. Detecting prohibited objects with physical size constraint from cluttered X-ray baggage images[J]. Knowledge-Based Systems, 2022, 237: 107916.
[26] 李连伟, 秦世引. 基于轻量级U-Net深度学习的人体安检隐匿违禁物的实时检测[J]. 电子与信息学报, 2022, 44(10): 3435-3446.
LI L W, QIN S Y. Real-time detection of hiding contraband in human body during the security check based on lightweight U-Net with deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3435-3446.
[27] ZHANG Y, XU W, YANG S, et al. Improved YOLOX detection algorithm for contraband in X-ray images[J]. Applied optics, 2022, 61(21): 6297-6310.
[28] LIU S T, HUANG D, WANG Y H. Learning spatial fusion for single-shot object detection[J]. arXiv:1911.09516,2019.
[29] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[30] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[31] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[32] TAO R, WEI Y, JIANG X, et al. Towards real-world X-ray security inspection: a high-quality benchmark and lateral inhibition module for prohibited items detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10923-10932.
[33] TAO R, WEI Y, LI H, et al. Over-sampling de-occlusion attention network for prohibited items detection in noisy X-ray images[J]. arXiv:2103.00809,2021.
[34] WEI Y, TAO R, WU Z, et al. Occluded prohibited items detection: an X-ray security inspection benchmark and de-occlusion attention module[C]//Proceedings of the 28th ACM International Conference on Multimedia, 2020: 138-146.
[35] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9627-9636.
[36] WANG Z, ZHANG H, LIN Z, et al. Prohibited items detection in baggage security based on improved YOLOv5[C]//2022 IEEE 2nd International Conference on Software Engineering and Artificial Intelligence (SEAI), 2022: 20-25.
[37] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[38] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[39] 穆思奇, 林进健, 汪海泉, 等. 基于改进 YOLOv4 的X射线图像违禁品检测算法[J]. 兵工学报, 2021, 42(12): 2675-2683.
MU S Q, LIN J J, WANG H Q, et al. An algorithm for detection of prohibited items in X-ray images based on improved YOLOv4[J]. Acta Armamentarii, 2021, 42(12): 2675-2683.
[40] 吴海滨, 魏喜盈, 刘美红, 等. 结合空洞卷积和迁移学习改进 YOLOv4 的 X 光安检危险品检测[J]. 中国光学, 2021, 14(6): 1417-1425.
WU H B, WEI X Y, LIU M H, et al. Improved YOLOv4 for X-ray security in dangerous goods detection with combined atrous convolution and transfer learning[J]. Chinese Optics, 2021, 14(6): 1417-1425.
[41] KUMAR R S, BALAJI A, SINGH G, et al. Recursive CNN model to detect anomaly detection in X-ray security image[C]//2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM), 2022: 742-747. |