[1] 徐凌伟, 权天祺. 基于BP神经网络的移动安全性能预测[J]. 聊城大学学报(自然科学版), 2020, 33(3): 34-40.
XU L W, QUAN T Q. Mobile secrecy performance prediction based on BP neural network[J]. Journal of Liaocheng University (Natural Sciencen), 2020, 33(3): 34-40.
[2] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), 2001.
[3] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005: 886-893.
[4] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 32(9): 1627-1645.
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[6] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[7] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[9] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[10] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[11] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[12] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings 14th European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, October 11-14, 2016: 21-37.
[13] 叶鲁斌, 刘皓月, 张纪元, 等. 家居环境中的智能扫地机器人设计[J]. 计算机辅助设计与图形学学报, 2023, 35(2): 262-272.
YE L B, LIU H Y, ZHANG J Y, et al. Design and implementation of AI algorithms in home-cleaning robot [J]. Journal of Computer-Aided Design and Computer Graphics, 2023, 35(2): 262-272.
[14] LV Y, LIU J, CHI W, et al. An inverted residual based lightweight network for object detection in sweeping robots[J]. Applied Intelligence, 2022, 52(11): 12206-12221.
[15] ZHUANG Y, LIN X, HU H, et al. Using scale coordination and semantic information for robust 3-D object recognition by a service robot[J]. IEEE Sensors Journal, 2014, 15(1): 37-47.
[16] CHEN Z, YANG J, CHEN L, et al. Garbage classification system based on improved ShuffleNet v2[J]. Resources, Conservation and Recycling, 2022, 178: 106090.
[17] YING B, XU Y, ZHANG S, et al. Weed detection in images of carrot fields based on improved YOLOv4[J]. Traitement du Signal, 2021, 38(2): 341-348.
[18] SU F, ZHAO Y, WANG G, et al. Tomato maturity classification based on SE-YOLOv3-MobileNetV1 network under nature greenhouse environment[J]. Agronomy, 2022, 12(7): 1638.
[19] GUO K, HE C, YANG M, et al. A pavement distresses identification method optimized for YOLOv5s[J]. Scientific Reports, 2022, 12(1): 3542.
[20] 何雨, 田军委, 张震, 等. YOLOv5目标检测的轻量化研究[J]. 计算机工程与应用, 2023, 59(1): 92-99.
HE Y, TIAN J W, ZHANG Z, et al. Lightweight research of YOLOv5 target detection [J]. Computer Engineering and Applications, 2023, 59(1): 92-99.
[21] MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 116-131.
[22] LI H, LI J, WEI H, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv:2206.02424, 2022.
[23] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[24] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[25] 张学立, 贾新春, 王美刚, 等. 安全帽与反光衣的轻量化检测: 改进YOLOv5s的算法[J]. 计算机工程与应用, 2024, 60(1): 104-109.
ZHANG X L, JIA X C, WANG M G, et al. Lightweight detection of helmets and reflective clothings: improved YOLOv5s algorithm[J]. Computer Engineering and Applications, 2024, 60(1): 104-109.
[26] WANG X, WU Z, JIA M, et al. Lightweight SM-YOLOv5 tomato fruit detection algorithm for plant factory[J]. Sensors, 2023, 23(6): 3336. |