[1] 韩玉洁, 曹杰, 刘琨, 等. 基于改进YOLO的无人机对地多目标检测[J]. 电子测量技术, 2020, 43(21): 19-24.
HAN Y J, CAO J, LIU K, et al. UAV ground multi-target detection based on improved YOLO[J]. Electronic Measurement Technology, 2020, 43(21): 19-24.
[2] 丁田, 陈向阳, 周强, 等. 基于改进YOLOX的安全帽佩戴实时检测[J]. 电子测量技术, 2022, 45(17): 72-78.
DING T, CHEN X Y, ZHOU Q, et al. Real-time detection of helmet waring based on improved YOLOX[J]. Electronic Measurement Technology, 2022, 45(17): 72-78.
[3] 冒国韬, 邓天民, 于楠晶. 基于多尺度分割注意力的无人机航拍图像目标检测算法[J]. 航空学报, 2023, 44(5): 273-283.
MAO G T, DENG T M, YU N J. Object detection in UAV images based on multi-scale split attention[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 273-283.
[4] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOV5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[5] YANG Y Z. Drone-view object detection based on the improved YOLOv5[C]//Proceedings of the IEEE International Conference on Electrical Engineering, Big Data and Algorithms, Changchun, 2022: 612-617.
[6] ZHU L, WANG X, KE Z, et al. BiFormer: vision transformer with bi-level routing attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 10323-10333.
[7] DAI X, CHEN Y, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 7373-7382.
[8] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[9] 李红光, 于若男, 丁文锐. 基于深度学习的小目标检测研究进展[J]. 航空学报, 2021, 42(7): 107-125.
LI H G, YU R N, DING W R. Research development of small object traching based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 107-125.
[10] CHEN Y, ZHANG P, LI Z, et al. Stitcher: feedback-driven data provider for object detection[J]. arXiv:2004.12432,2020.
[11] KISANTAL M, WOJNA Z, MURAWSKI J, et al. Augmentation for small object detection[J]. arXiv:1902.07296, 2019.
[12] 李青援, 邓赵红, 罗晓清, 等. 注意力与跨尺度融合的 SSD目标检测算法[J]. 计算机科学与探索, 2022, 16(11): 2575-2586.
LI Q Y, DENG Z H, LUO X Q, et al. SSD object detection algorithm with attention and cross-scale fusion[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2575-2586.
[13] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region prposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[14] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detetion[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 779-788.
[15] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767,2018.
[16] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934,2020.
[17] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision (ECCV), Amsterdam, 2016: 21-37.
[18] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, 2020: 1571-1580.
[19] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017: 936-944.
[20] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 8759-8768.
[21] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[22] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[23] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[24] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[25] 俞军, 贾银山. 改进YOLOv5的小目标检测算法[J]. 计算机工程与应用, 2023, 59(12): 201-207.
YU J, JIA Y S. Improved YOLOv5 for small object detection algorithm[J]. Computer Engineering and Applications, 2023, 59(12): 201-207.
[26] DU D W, ZHU P F, WEN L Y, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop, Seoul, 2019.
[27] REN S, ZHOU D, HE S, et al. Shunted self-attention via multi-scale token aggregation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 10853-10862.
[28] OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning[C]//ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023: 1-5.
[29] 刘展威, 陈慈发, 董方敏. 基于YOLOv5s的航拍小目标检测改进算法研究[J]. 无线电工程, 2023, 53(10): 2286-2294.
LIU Z W, CHEN C F, DONG F M. Improved aerial small object detection algorithm based on YOLOv5s[J]. Radio Engineering, 2023, 53(10): 2286-2294. |