[1] 余震, 何留杰, 王振飞. 基于中智理论与方向α-均值的图像边缘检测算法[J]. 电子测量与仪器学报, 2020, 32(3): 8-16.
YU Z, HE L J, WANG Z F. Image edge detection based on intelligence theory and direction α-mean[J]. Journal of Electronic Measurement and Instrument, 2020, 32(3): 8-16.
[2] 何丽, 张红艳, 房婉琳. 融合多尺度边界特征的显著实例分割[J]. 计算机科学与探索, 2022, 16(8): 1865-1876.
HE L, ZHANG H Y, FANG W L. Salient instance segmentation via multiscale boundary characteristic network[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1865-1876.
[3] 朱炳宇, 刘朕, 张景祥. 融合Grad-CAM和卷积神经网络的COVID-19检测算法[J]. 计算机科学与探索, 2022, 16(9): 2108-2120.
ZHU B Y, LIU Z, ZHANG J X. COVID-19 detection algorithm combining Grad-CAM and convolutional neural network[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2108-2120.
[4] 曹亚明, 肖奇, 杨震. 仿真图像作为模板的遥感影像小目标检测方法[J]. 计算机工程与应用, 2022, 58(17): 111-119.
CAO Y M, XIAO Q, YANG Z. Remote sensing image small target detection method using simulation image as template[J]. Computer Engineering and Applications, 2022, 58(17): 111-119.
[5] 王斌, 李靖, 赵康, 等. 面向火焰快速检测的轻量化深度网络研究[J]. 计算机工程与应用, 2022, 58(17): 256-262.
WANG B, LI J, ZHAO K, et al. Research on lightweight depth network for rapid flame detection[J]. Computer Engineering and Applications, 2022, 58(17): 256-262.
[6] 刘艺, 李蒙蒙, 郑奇斌, 等. 视频目标跟踪算法综述[J]. 计算机科学与探索, 2022, 16(7): 1504-1515.
LIU Y, LI M M, ZHENG Q B, et al. Survey on video object tracking algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515.
[7] 任宁, 付岩, 吴艳霞, 等. 深度学习应用于目标检测中失衡问题研究综述[J]. 计算机科学与探索, 2022, 16(9): 1933-1953.
REN N, FU Y, WU Y X, et al. Review of research on imbalance problem in deep learning applied to object detection[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1933-1953.
[8] 王鹏飞, 黄汉明, 王梦琪. 改进YOLOv5的复杂道路目标检测算法[J]. 计算机工程与应用, 2022, 58(17): 81-92.
WANG P F, HUANG H M, WANG M Q. Complex road target detection algorithm based on improved YOLOv5[J]. Computer Engineering and Applications, 2022, 58(17): 81-92.
[9] 王榆锋, 李大海. 改进YOLO框架的血细胞检测算法[J]. 计算机工程与应用, 2022, 58(12): 191-198.
WANG Y F, LI D H. Improved YOLO framework blood cell detection algorithm[J]. Computer Engineering and Applications, 2022, 58(12): 191-198.
[10] 茅智慧, 朱佳利, 吴鑫, 等. 基于YOLO的自动驾驶目标检测研究综述[J]. 计算机工程与应用, 2022, 58(15): 68-77.
MAO Z H, ZHU J L, WU X, et al. Review of YOLO based target detection for autonomous driving[J]. Computer Engineering and Applications, 2022, 58(15): 68-77.
[11] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Piscataway: IEEE, 2014: 580-587.
[12] GIRSHICK R. Fast R-CNN[C]//IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Piscataway: IEEE, 2016: 1440-1448.
[13] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[14] DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016: 379-387.
[15] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017: 936-944.
[16] XIE X X, CHENG G, WANG J B, et al. Oriented R-CNN for object detection[C]//2021 IEEE/CVF International Conference on Computer Vision, 2021: 3500-3509.
[17] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 779-788.
[18] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision, 2016: 21-37.
[19] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2020: 2999-3007.
[20] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE Conference on Computer Vision & Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 6517-6525.
[21] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2022-09-20]. https://arxiv.org/pdf/1804.02767.
[22] BOCHKOVSKIY A, WANG C Y, LIAO H Y M, et al. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2022-09-20]. https://arxiv.org/pdf/2004.10934.
[23] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. (2021-07-18)[2022-09-20]. https://arxiv.org/pdf/2107.08430.
[24] DING J, XUE N, LONG Y, et al. Learning RoI transformer for oriented object detection in aerial images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2020: 2849-2858.
[25] YANG X, YANG J R, YAN J C, et al. SCRDet: towards more robust detection for small, cluttered and rotated objects[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2020: 8232-8241.
[26] YANG X, YAN J C. Arbitrary-oriented object detection with circular smooth label[EB/OL]. (2020-07-12)[2022-10-30]. https://arxiv.org/pdf/2003.05597v2.
[27] YANG X, YAN J C, FENG Z M, et al. R3Det: refined single-stage detector with feature refinement for rotating object[EB/OL]. (2019-08-15)[2022-09-20]. https://arxiv.org/pdf/1908.05612.
[28] JIANG Y Y, ZHU X Y, WANG X B, et al. R2cnn: rotational region CNN for orientation robust scene text detection[EB/OL]. (2017-06-29)[2022-09-20]. https://arxiv.org/pdf/1706.09579.
[29] MA J Q, SHAO W Y, HAO Y, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Transactions on Multimedia, 2018, 20(11): 3111-3122.
[30] ZHOU X Y, YAO C, WEN H, et al. EAST: an efficient and accurate scene text detector[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 2642-2651.
[31] LIAO M H, SHI B G, BAI X. TextBoxes++: a single-shot oriented scene text detector[J]. IEEE Transactions on Image Processing, 2018, 27(8): 3676-3690.
[32] TIAN Z, SHEN Z, CHEN C H, et al. FCOS: fully convolutional one-stage object detection[EB/OL]. (2019-04-02)[2022-09-20]. https://arxiv.org/pdf/1904.01355.
[33] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[EB/OL]. (2018-05-05)[2022-10-19]. https://arxiv.org/pdf/1803.01534.
[34] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 37(9): 1904-1916.
[35] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2020: 658-666.
[36] WOO S Y, PARK J C, LEE J Y, et al. CBAM: convolutional block attention module[EB/OL]. (2018-07-01)[2022-09-20]. https://arxiv.org/pdf/1807.06521.
[37] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[EB/OL]. (2019-11-19)[2022-09-20]. https://arxiv.org/pdf/1911. 08287.
[38] ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[EB/OL]. (2020-05-07)[2022-09-20]. https://arxiv.org/pdf/2005.03572.
[39] YANG X, SUN X, FU H, et al. Automatic ship detection of remote sensing images from Google Earth in complex scenes based on multi-scale rotation dense feature pyramid networks[EB/OL]. (2018-06-12)[2022-10-19]. https://arxiv.org/pdf/1806.04331.
[40] LIU L, PAN Z X, LEI B. Learning a rotation invariant detector with rotatable bounding box[EB/OL]. (2017-11-26)[2022-10-19]. https://arxiv.org/pdf/1711.09405.
[41] MING Q, MIAO L J, ZHOU Z Q, et al. CFC-Net: a critical feature capturing network for arbitrary-oriented object detection in remote-sensing images[EB/OL]. (2021-01-18)[2022-10-19]. https://arxiv.org/pdf/2101.06849.
[42] WANG J W, YANG W, LI H C, et al. Learning center probability map for detecting objects in aerial images[J]. IEEE Transactions on GeoScience and Remote Sensing, 2021, 59(5): 4307-4323.
[43] LU D C. OSKDet: towards orientation-sensitive keypoint localization for rotated object detection[EB/OL]. (2021-04-01)[2022-10-19]. https://arxiv.org/pdf/2104.08697.
[44] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[EB/OL]. (2017-09-05)[2022-11-26]. https://arxiv.org/pdf/1709.01507.
[45] CHEN Z M, CHEN K, LIN W Y, et al. PIoU Loss: towards accurate oriented object detection in complex environments[EB/OL]. (2020-07-19)[2022-11-26]. https://arxiv.org/pdf/1709.01507. |