[1] 黄浩, 葛洪伟. 强化类间区分的深度残差表情识别网络[J]. 计算机科学与探索, 2022, 16(8): 1842-1849.
HUANG H, GE H W. Deep residual expression recognition network to enhance inter-class discrimination[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1842-1849.
[2] 洪惠群, 沈贵萍, 黄风华. 表情识别技术综述[J]. 计算机科学与探索, 2022, 16(8): 1764-1778.
HONG H Q, SHEN G P, HUANG F H. Summary of expression recognition technology[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1764-1778.
[3] 张学森, 贾静平. 基于三维卷积神经网络和峰值帧光流的微表情识别算法[J]. 模式识别与人工智能, 2021, 34(5): 423-433.
ZHANG X S, JIA J P. Micro-expression recognition algorithm based on 3D convolutional neural network and optical flow fields from neighboring frames of apex frame[J]. Pattern Recognition and Artificial Intelligence, 2021, 34(5): 423-433.
[4] EKMAN P, FRIESEN W V. Constants across cultures in the face and emotion[J]. Journal of Personality and Social Psychology, 1971, 17(2): 124-129.
[5] SUWA M, SUGIE N, FUJIMORA K. A preliminary note on pattern recognition of human emotional expression[C]//Proceeding of the 4th International Joint Conference on Pattern Recognition, 1978: 408-410.
[6] 刘栋, 李素, 曹志冬. 深度学习及其在图像物体分类与检测中的应用综述[J]. 计算机科学, 2016, 43(12): 13-23.
LIU D, LI S, CAO Z D. State-of-the-art on deep learning and its application in image object classification and detection[J]. Computer Science, 2016, 43(12): 13-23.
[7] CHENG S, ZHOU G. Facial expression recognition method based on improved VGG convolutional neural network[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2020, 34(7): 2056003.
[8] LU G, ZHU H, HAO Q, et al. Facial expression recognition based on deep residual network[J]. Data Collection and Processing, 2019, 34(1): 54-61.
[9] 梁华刚, 雷毅雄. 增强可分离卷积通道特征的表情识别研究[J]. 计算机工程与应用, 2022, 58(2): 184-192.
LIANG H G, LEI Y X. Expression recognition with separable convolution channel enhancement features[J]. Computer Engineering and Applications, 2022, 58(2): 184-192.
[10] 刘尚旺, 刘承伟, 张爱丽. 基于深度可分卷积神经网络的实时人脸表情和性别分类[J]. 计算机应用, 2020, 40(4): 990-995.
LIU S W, LIU C W, ZHANG A L. Real-time facial expression and gender recognition based on depthwise separable convolutional neural network[J]. Journal of Computer Applications, 2020, 40(4): 990-995.
[11] 李春虹, 卢宇. 基于深度可分离卷积的人脸表情识别[J]. 计算机工程与设计, 2021, 42(5): 1448-1454.
LI C H, LU Y. Facial expression recognition based on depthwise separable convolution[J]. Computer Engineering and Design, 2021, 42(5): 1448-1454.
[12] 王韦祥, 周欣, 何小海, 等. 基于改进MobileNet网络的人脸表情识别[J]. 计算机应用与软件, 2020, 37(4): 137-144.
WANG W X, ZHOU X, HE X H, et al. Facial expression recognition based on improved mobileNet[J]. Computer Applications and Software, 2020, 37(4): 137-144.
[13] 倪锦园, 张建勋. 多尺度坐标注意力金字塔卷积的面部表情识别[J]. 计算机工程与应用, 2023, 59(22): 242-250.
NI J Y, ZHANG J X. Multi-scale coordinate attention pyramid convolution for facial expression recognition[J]. Computer Engineering and Applications, 2023, 59(22): 242-250.
[14] WANG K, PENG X J, YANG J F, et al. Region attention networks for pose and occlusion robust facial expression recognition[J]. IEEE Transactions on Image Processing, 2020, 29: 4057-4069.
[15] YANG B, CAO J, NI R, et al. Facial expression recognition using weighted mixture deep neural network based on double-channel facial images[J]. IEEE Access, 2018, 6: 4630-4640.
[16] 姜月武, 张玉金, 施建新. 结合关键点与权重分配残差网络的表情识别[J]. 计算机工程与应用, 2022, 58(17): 181-188.
JIANG Y W, ZHANG Y J, SHI J X. Expression recognition combining key points and residual network of weight distribution[J]. Computer Engineering and Applications, 2022, 58(17): 181-188.
[17] GOODFELLOW I J, ERHAN D, CARRIER P L, et al. Challenges in representation learning: a report on three machine learning contests[J]. Neural Networks, 2015, 64: 59-63.
[18] LUCEY P, COHN J F, KANADE T, et al. The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, 2010: 94-101.
[19] HAASE D, AMTHOR M. Rethinking depthwise separable convolutions: how intra-kernel correlations lead to improved MobileNets[C]//The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 14600-14609.
[20] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]//International Conference on Learning Representations, 2016: 674-685.
[21] YANG L, JIANG H J, CAI R J, et al. CondenseNet V2: sparse feature reactivation for deep networks[J]. arXiv:2104.
04382, 2021.
[22] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[23] BISWAS K, KUMAR S, BANERJEE S, et al. SMU: smooth activation function for deep networks using smoothing maximum technique[J]. arXiv:2111.04682, 2021.
[24] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision, 2018: 122-138.
[25] LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[J]. arXiv:2201.03545, 2022.
[26] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning, 2015, 37: 448-456.
[27] CHOLLET, FRANCOIS. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 1800-1807.
[28] 刘全明, 辛阳阳. 端到端的低质人脸图像表情识别[J]. 小型微型计算机系统, 2020, 41(3): 668-672.
LIU Q M, XIN Y Y. Face expression recognition based on end-to-end low-quality face images[J]. Journal of Chinese Computer Systems, 2020, 41(3): 668-672.
[29] 徐琳琳, 张树美, 赵俊莉. 构建并行卷积神经网络的表情识别算法[J]. 中国图象图形学报, 2019, 24(2): 227-236.
XU L L, ZHANG S M, ZHAO J L. Expression recognition algorithm for parallel convolutional neural networks[J]. Journal of Image and Graphics, 2019, 24(2): 227-236.
[30] MING Z, CHAZALON J, LUQMAN M M, et al. FaceLive-
Net: end-to-end networks combining face verification with interactive facial expression-based liveness detection[C]//2018 24th International Conference on Pattern Recognition, 2018: 3507-3512.
[31] 张鹏, 孔韦韦, 滕金保. 基于多尺度特征注意力机制的人脸表情识别[J]. 计算机工程与应用, 2022, 58(1): 182-189.
ZHANG P, KONG W W, TENG J B. Facial expression recognition based on multi-scale feature attention mechanism[J]. Computer Engineering and Applications, 2022, 58(1): 182-189.
[32] MIAO S, XU H Y, HAN Z Q, et al. Recognizing facial expressions using a shallow convolutional neural network[J]. IEEE Access, 2019, 7: 78000-78011.
[33] 尹鹏博, 潘伟民, 张海军. 基于卷积注意力的轻量级人脸表情识别方法[J]. 激光与光电子学进展, 2021, 58(12): 245-251.
YIN P B, PAN W M, ZHANG H J. Lightweight facial expression recognition method based on convolutional attention[J]. Laser & Optoelectronics Progress, 2021, 58(12): 245-251.
[34] MINAEE S, ABDOLRASHIDI A. Deep-emotion: facial expression recognition using attentional convolutional network[J]. arXiv:1902.01019, 2019.
[35] JAIN D K, SHAMSOLMOALI P, SEHDEV P. Extended deep neural network for facial emotion recognition[J]. Pattern Recognition Letters, 2019, 120: 69-74.
[36] BOUGHIDA A, KOUAHLA M N, LAFIFI Y. A novel approach for facial expression recognition based on Gabor filters and genetic algorithm[J]. Evolving Systems, 2021, 3: 1-15.
[37] SUN X, XIA P P, ZHANG L M, et al. A ROI-guided deep architecture for robust facial expressions recognition[J]. Information Sciences, 2020, 522: 35-48.
[38] 王晓峰, 王昆, 刘轩, 等. 自适应重加权池化深度多任务学习的表情识别[J]. 计算机工程与设计, 2022, 43(4): 1111-1120.
WANG X F, WANG K, LIU X, et al. Expression recognition based on adaptive reweighting pooling deep multi task learning[J]. Computer Engineering and Design, 2022, 43(4): 1111-1120.
[39] 程卫月, 张雪琴, 林克正, 等. 融合全局与局部特征的深度卷积神经网络算法[J]. 计算机科学与探索, 2022, 16(5): 1146-1154.
CHENG W Y, ZHANG X Q, LIN K Z, et al. Deep convolutional neural network algorithm fusing global and local features[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1146-1154.
[40] 罗思诗, 李茂军, 陈满. 多尺度融合注意力机制的人脸表情识别网络[J]. 计算机工程与应用, 2023, 59(1): 199-206.
LUO S S, LI M J, CHEN M. Multi-scale integrated attention mechanism for facial expression recognition network[J]. Computer Engineering and Applications, 2023, 59(1): 199-206. |