计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (2): 221-230.DOI: 10.3778/j.issn.1002-8331.2208-0279

• 图形图像处理 • 上一篇    下一篇

改进残差网络的肾细胞癌ISUP分级研究

孙振铎,张明洋,王向辉,赵磊,刘爽,崔振宇,杨昆,刘琨   

  1. 1.河北大学 质量技术监督学院,河北 保定 071002
    2.河北省新能源汽车动力系统轻量化技术创新中心,河北 保定 071002
    3.河北大学 光学工程博士后科研流动站,河北 保定 071002
    4.河北大学附属医院 泌尿外科,河北 保定 071000
  • 出版日期:2024-01-15 发布日期:2024-01-15

Research on ISUP Grade of Renal Cell Carcinoma by Improved ResNet Network

SUN Zhenduo, ZHANG Mingyang, WANG Xianghui, ZHAO Lei, LIU Shuang, CUI Zhenyu, YANG Kun, LIU Kun   

  1. 1.College of Quality and Technical Supervision, Hebei University, Baoding, Hebei 071002, China
    2.Innovation Center for Lightweight of New Energy Vehicle Power System of Hebei, Baoding, Hebei 071002, China
    3.Postdoctoral Research Station of Optical Engineering, Hebei University, Baoding, Hebei 071002, China
    4.Department of Urology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, China
  • Online:2024-01-15 Published:2024-01-15

摘要: 术前预测透明细胞肾细胞癌(clear cell renal cell carcinoma,ccRCC)的分级可有效评估患者的预后并指导临床治疗,但实现精准预测是目前本领域内的一项重要问题。该研究首先确定最优建模的CT类型与网络层数,提出了一种基于改进残差网络的ccRCC的CT影像分级模型,具体包括:利用大卷积操作对图像进行原始特征提取,利用混合注意力模块通过计算特征图中当前空间和临近空间以及当前空间和远距离空间之间的信息交互获取更多有用的特征,使得原始图像特征图在通道维度与空间维度上进行自适应特征细化,利用四个深度卷积网络层提取图像深度特征,并利用改进通道注意力模块产生通道注意力特征图信息,提取更多通道上的交互信息。实验结果表明,增强CT实质期图像和34层残差网络最有利于分级预测模型的开发,所提出的模型的总体加权准确率、AUC、精度、召回率和F1分数分别为90.8%、0.897、90.5%、90.8%、90.9%,各项指标优于其他常见网络结构,因此,该模型在预测ccRCC的国际泌尿病理学学会(International Society of Urological Pathology,ISUP)分级方面有良好的效能,对患者的临床辅助诊断和预后治疗具有重要的理论指导意义。

关键词: 透明细胞肾细胞癌(ccRCC), ISUP分级, CT, 增强CT实质期, 通道注意力, 空间注意力

Abstract: Clear cell renal cell carcinoma (ccRCC) grading prior to surgery is of great importance for effectively evaluating the prognosis of patients or guiding clinical treatment. But the realization of accurate prediction is an important problem in the field. The optimal computed tomography (CT) type and network layer number for modeling are determined, and a CT image grading model based on ccRCC with improved residual network is proposed in this paper. Firstly, the model uses large convolution operation to extract original features from the images. Then, the improved module calculates the information interaction of the current space and local space, and calculates additionally the interaction of the current space and remote space. The original image features are adaptively refined in channel dimension and spatial dimension. Then, improved channel attention module makes the depth feature generate channel attention feature map information. Interaction information on more channels is extracted. The experimental results show that the enhanced parenchyma CT images and 34-layer residual network are most beneficial to the development of grading model. The indexes of the proposed model are better than other common network structures. The overall weighted accuracy reaches 90.8%, the AUC and precision reach 0.897 and 90.5%, the recall and F1-score reach 90.8% and 90.9%. Therefore, the deep learning model has good performance in predicting International Society of Urological Pathology (ISUP) grade of ccRCC, and has important theoretical guiding significance for clinical auxiliary diagnosis and prognostic treatment of patients.

Key words: clear cell renal cell carcinoma (ccRCC), International Society of Urological Pathology(ISUP) grade, CT, enhanced CT parenchymal phase, channel attention, space attention