[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA, 2021, 71(3): 209-249.
[2] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA, 2022, 72(1): 7-33.
[3] SRIGLEY J R, DELAHUNT B, EBIE J N, et al. The International Society of Urological Pathology (ISUP) Vancouver classification[J]. American Journal of Surgical Pathology, 2013, 37(10): 1469-1489.
[4] JEWETT M A S, MATTAR K, BASIUK J, et al. Active surveillance of small renal masses: progression patterns of early stage kidney cancer[J]. European Urology, 2011, 60(1): 39-44.
[5] BEKTAS C T, KOCAK B, YARDIMCI A H, et al. Clear cell renal cell carcinoma: machine learning-based quantitative computed tomography texture analysis for prediction of Fuhrman nuclear grade[J]. European Radiology, 2019, 29(3): 1153-1163.
[6] KOCAK B, DURMAZ E S, ATES E, et al. Unenhanced CT texture analysis of clear cell renal cell carcinomas: a machine learning-based study for predicting histopathologic nuclear grade[J]. American Journal of Roentgenology, 2019, 212(6) : 132-139.
[7] MA Y Q, GUAN Z, LIANG H, et al. Predicting the WHO/ISUP grade of clear cell renal cell carcinoma through CT-based tumoral and peritumoral radiomics[J]. Frontiers in Oncology, 2022, 12: 831112.
[8] ZHOU L, ZHANG Z H, CHEN Y H, et al. A deep learning-based radiomics model for differentiating benign and malignant renal tumors[J]. Translational Oncology, 2019, 12(2): 292-300.
[9] BYUN S S, HEO T S, CHOI J M, et al. Deep learning based prediction of prognosis in nonmetastatic clear cell renal cell carcinoma[J]. Scientific Reports, 2021, 11(1): 1242.
[10] LIN F, MA C Y, XU J P, et al. A CT-based deep learning model for predicting the nuclear grade of clear cell renal cell carcinoma[J]. European Journal of Radiology, 2020, 129: 109079.
[11] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[12] 黄英来, 艾昕. 改进残差网络在玉米叶片病害图像的分类研究[J]. 计算机工程与应用, 2021, 57(23): 178-184.
HUANG Y L, AI X. Research on classification of corn leaf disease image by improved residual network[J]. Computer Engineering and Applications, 2021, 57(23): 178-184.
[13] 林雍博, 凌捷. 基于残差网络和GRU的XSS攻击检测方法[J]. 计算机工程与应用, 2022, 58(10): 101-107.
LIN Y B, LIN J. XSS attack detection method based on residual network and GRU[J]. Computer Engineering and Applications, 2022, 58(10): 101-107.
[14] JIANG J, ELGUINDI S, BERRY S, et al. Nested-block self-attention multiple resolution residual network for multi-organ segmentation from CT[J]. Medical Physics, 2022, 49(8): 5244-5257.
[15] SZEGDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[J]. arXiv:1409.4842,2014.
[16] HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetV3[C]//2019 IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
[17] HAKIMI A A, PHAM C G, HSIEH J J. A clear picture of renal cell carcinoma[J]. Nature Genetics, 2013, 45(8): 849-850.
[18] STRANSKY L A, VLGEANT S M, HUANG B, et al. Sensitivity of VHL mutant kidney cancers to HIF2 inhibitors does not require an intact p53 pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(14): 2120403119.
[19] GOSSAGE L, EISEN T, MAHER E R. VHL, the story of a tumour suppressor gene[J]. Nature Reviews Cancer, 2015, 15(1): 55-64.
[20] SEMENZA G L. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations[J]. Journal of Clinical Investigation, 2013, 123(9): 3664-3671.
[21] HSIEH J J, LE V, CAO D F, et al. Genomic classifications of renal cell carcinoma: a critical step towards the future application of personalized kidney cancer care with pan-omics precisio[J]. The Journal of pathology, 2018, 244(5): 525-537. |