计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (14): 217-223.DOI: 10.3778/j.issn.1002-8331.2205-0166
刘娜,汪国强
LIU Na, WANG Guoqiang
摘要: 眼底图像中的自动血管分割在各种心血管和眼科疾病的筛查、诊断、治疗和评估中发挥着重要作用。然而,由于注释良好的数据有限、血管大小不一、血管结构复杂,视网膜血管分割已成为一项长期存在的挑战。因此,提出了一种自注意力融合网络,它将空间和通道注意力并行地结合起来处理视网膜血管分割问题。分别从空间维度和通道维度进行特征提取,专注于高频信息提取。该网络将两个注意模块的输出相加,以进一步改进特征表示,从而获得更精确的分割结果。在公开数据集DRIVE、CHASE_DB1和STARE上验证了该算法,实验结果表明,与近几年的视网膜血管分割算法相比,提出的视网膜血管分割算法具有优越性。