计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (3): 94-103.DOI: 10.3778/j.issn.1002-8331.2206-0113
钟智鹏,王海龙,苏贵斌,柳林,裴冬梅
ZHONG Zhipeng, WANG Hailong, SU Guibin, LIU Lin, PEI Dongmei
摘要: 随着音乐科技研究的不断深入,音乐情感识别已被广泛实践和应用在音乐推荐、音乐心理治疗、声光场景构建等方面。模拟人类感受音乐表现情感的过程,针对音乐情感识别中长短时记忆神经网络的长距离依赖和训练效率低的问题,提出一种新的网络模型CBSA(CNN BiLSTM self attention),应用于长距离音乐情感识别回归训练。模型使用二维卷积神经网络获取音乐情感局部关键特征,采用双向长短时记忆神经网络从获取的局部关键特征中提取序列化音乐情感信息,利用自注意力模型对获取的序列化信息进行动态权重调整,突出音乐情感全局关键点。实验结果表明,CBSA模型可缩短分析音乐情感信息中数据规律的训练时间,有效地提高音乐情感识别精确度。