[1] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[2] ZHOU N, LIANG R, SHI W. A lightweight convolutional neural network for real-time facial expression detection[J]. IEEE Access, 2020, 9: 5573-5584.
[3] KONG Y, REN Z, ZHANG K, et al. Lightweight facial expression recognition method based on attention mechanism and key region fusion[J]. Journal of Electronic Imaging, 2021, 30(6): 063002.
[4] NI J, ZHANG X, ZHANG J. Multiscale feature fusion attention lightweight facial expression recognition[J]. International Journal of Aerospace Engineering, 2022: 6523234.
[5] EKMAN P, FRIESEN W V. Facial action coding system: a technique for the measurement of facial actions[J]. Rivista Di Psichiatria, 1978, 47(2): 126-138.
[6] PLUTCHIK R. A general psychoevolutionary theory of emotion[J]. Social Science Information, 1982, 21(4/5): 529-553.
[7] ZHANG C B, JIANG P T, HOU Q, et al. Delving deep into label smoothing[J]. IEEE Transactions on Image Processing, 2021, 30: 5984-5996.
[8] ZHAO Z, LIU Q, ZHOU F. Robust lightweight facial expression recognition network with label distribution training[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 3510-3519.
[9] MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 116-131.
[10] PENG C, ZHANG X, YU G, et al. Large kernel matters-improve semantic segmentation by global convolutional network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4353-4361.
[11] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[12] LI S, DENG W. Reliable crowdsourcing and deep locality-preserving learning for unconstrained facial expression recognition[J]. IEEE Transactions on Image Processing, 2019, 28(1): 356-370.
[13] ALI M, BEHZAD H, MOHAMMAD H, et al. AffectNet: a new database for facial expression, valence, and arousal computation in the wild[J]. IEEE Transactions on Affective Computing, 2017, 10(1): 18-31.
[14] DENG J, GUO J, VERVERAS E, et al. Retinaface: single-shot multi-level face localisation in the wild[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5203-5212.
[15] LI Y, ZENG J, SHAN S, et al. Occlusion aware facial expression recognition using CNN with attention mechanism[J]. IEEE Transactions on Image Processing, 2018, 28(5): 2439-2450.
[16] LI Y, LU Y, LI J, et al. Separate loss for basic and compound facial expression recognition in the wild[C]//Asian Conference on Machine Learning, 2019: 897-911.
[17] WANG K, PENG X, YANG J, et al. Region attention networks for pose and occlusion robust facial expression recognition[J]. IEEE Transactions on Image Processing, 2020, 99: 4057-4069.
[18] WANG K, PENG X, YANG J, et al. Suppressing uncertainties for large-scale facial expression recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6897-6906.
[19] FARZANEH A H, QI X. Discriminant distribution-agnostic loss for facial expression recognition in the wild[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 406-407.
[20] 唐宏, 向俊玲, 陈海涛, 等. 多区域融合轻量级人脸表情识别网络[J]. 激光与光电子学进展, 2023, 60(6): 81-89.
TANG H, XIANG J L, CHEN H T, et al. Lightweight network based on multiregion fusion for facial expression recognition[J]. Laser & Optoelectronics Progress, 2023, 60(6): 81-89.
[21] MA H, CELIK T, LI H. Lightweight attention convolutional neural network through network slimming for robust facial expression recognition[J]. Signal, Image and Video Processing, 2021, 15(7): 1507-1515.
[22] HEWITT C, GUNES H. CNN-based facial affect analysis on mobile devices[J]. arXiv:1807.08775, 2018.
[23] SIQUEIRA H, MAGG S, WERMTER S. Efficient facial feature learning with wide ensemble-based convolutional neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 5800-5809. |