计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (8): 227-238.DOI: 10.3778/j.issn.1002-8331.2210-0366
张朝阳,张上,王恒涛,冉秀康
ZHANG Zhaoyang, ZHANG Shang, WANG Hengtao, RAN Xiukang
摘要: 针对地理空间遥感图像中检测目标存在多尺度特性、形态多变以及小目标判别特征过少等造成检测识别精度不高的问题,提出了基于多尺度下遥感小目标多头注意力检测算法YOLO-StrVB。对网络结构进行重构,搭建多尺度网络模型,增加目标检测层,提高特征提取网络下遥感小目标模型不同尺度下的检测能力;加入双向特征金字塔网络(Bi-FPN)进行多尺度特征融合,提高双向跨尺度连接和加权特征融合;在YOLOv5网络末端融合Swin Transformer多头注意力机制块,提升感受野适应目标识别任务的多尺度融合关系,优化主干网络;使用Varifocal loss对网络进行训练,提升遥感密集检测小目标的存在置信度和定位精度,并选用CIoU作为边界框回归的损失函数,提高感知分类得分(IACS)的边框回归精度。通过在遥感目标数据集NWPU VHR-10上的实验验证,对比YOLOv5原模型的mAP提高了3.05个百分点,能有效提高小目标的检测精度,达到了对地理空间遥感图像中小目标检测的鲁棒性。