[1] 马永杰, 程时升, 马芸婷, 等. 卷积神经网络及其在智能交通系统中的应用综述[J]. 交通运输工程学报, 2021, 21(4): 48-71.
MA Y J, CHENG S S, MA Y T, et al. Review of convolutional neural network and its application in intelligent transportation system[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 48-71.
[2] RADU M D, COSTEA I M, STAN V A. Automatic traffic sign recognition artificial inteligence-deep learning algorithm[C]//Proceedings of the 12th International Conference on Electronics, Computers and Artificial Intelligence, 2020: 1-4.
[3] MOGELMOSE A, TRIVEDI M M, MOESLUND T B. Vision-based traffic sign detection and analysis for intelligent driver assistance systems: perspectives and survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4): 1484-1497.
[4] SAADNA Y, BEHLOUL A. An overview of traffic sign detection and classification methods[J]. International Journal of Multimedia Information Retrieval, 2017, 6: 193-210.
[5] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[6] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[7] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[8] 张毅, 龚致远, 韦文闻. 基于改进Faster R-CNN模型的交通标志检测[J]. 激光与光电子学进展, 2020, 57(18): 173-181.
ZHANG Y, GONG Z Y, WEI W W. Traffic sign detection based on improved faster R-CNN model[J]. Laser and Optoelectronics Progress, 2020, 57(18): 173-181.
[9] HAN C, GAO G, ZHANG Y. Real-time small traffic sign detection with revised faster-RCNN[J]. Multimedia Tools and Applications, 2019, 78: 13263-13278.
[10] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 21-37.
[11] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[12] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[13] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767,2018.
[14] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934,2020.
[15] GE Z, LIU S, WANG F, et al. YOLOx: exceeding yolo series in 2021[J]. arXiv:1606.08415,2016.
[16] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976,2022.
[17] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696,2022.
[18] XU X, JIANG Y, CHEN W, et al. Damo-YOLO: a report on real-time object detection design[J]. arXiv:2211.15444,2022.
[19] 刘紫燕, 袁磊, 朱明成, 等. 融合SPP和改进FPN的YOLOv3交通标志检测[J]. 计算机工程与应用, 2021, 57(7): 164-170.
LIU Z Y, YUAN L, ZHU M C, et al. YOLOv3 traffic sign detection based on SPP and improved FPN[J]. Computer Engineering and Applications, 2021, 57(7): 164-170.
[20] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[21] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[22] FAN W, YI N, HU Y. A Traffic sign recognition method based on improved YOLOv3[C]//Advances in Intelligent Automation and Soft Computing, 2022: 846-853.
[23] 冯爱棋, 吴小俊, 徐天阳. 融合注意力机制和上下文信息的实时交通标志检测算法[J]. 计算机科学与探索, 2023, 17(11): 2676-2688.
FENG A Q, WU X J, XU T Y. Real-time traffic sign detection algorithm combining attention mechanism and contextual information[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2676-2688.
[24] 俞林森, 陈志国. 融合前景注意力的轻量级交通标志检测网络[J]. 电子测量与仪器学报, 2023, 37(1): 21-31.
YU L S, CHEN Z G. Lightweight traffic sign detection network with fused foreground attention[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(1): 21-31.
[25] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[26] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[27] LI H, LI J, WEI H, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv:2206.02424,2022.
[28] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognitio, 2019: 658-666.
[29] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[30] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[31] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[32] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[33] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[34] ZHU Z, LIANG D, ZHANG S, et al. Traffic-sign detection and classification in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2110-2118.
[35] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[36] LI X, WANG W, HU X, et al. Selective kernel networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 510-519.
[37] LIU Y, SHAO Z, TENG Y, et al. NAM: normalization-based attention module[J]. arXiv:2111.12419,2021.
[38] 胡均平, 王鸿树, 戴小标, 等. 改进YOLOv5的小目标交通标志实时检测算法[J]. 计算机工程与应用, 2023, 59(2): 185-193.
HU J P, WANG H S, DAI X B, et al. Real-time detection algorithm for small-target traffic signs based on improved YOLOv5[J]. Computer Engineering and Applications, 2023, 59(2): 185-193.
[39] 尹宋麟, 谭飞, 周晴, 等. 基于改进YOLOv4模型的交通标志检测[J]. 无线电工程, 2022, 52(11): 2087-2093.
YIN S L, TAN F, ZHOU Q, et al. Traffic sign detection based on improved YOLOv4 model[J]. Radio Engineering, 2022, 52(11): 2087-2093.
[40] 韦强, 胡晓阳, 赵虹鑫. 改进YOLOv5的交通标志检测方法[J]. 计算机工程与应用, 2023, 59(13): 229-237.
WEI Q, HU X Y, ZHAO H X. Improved traffic sign detection method for YOLOv5[J]. Computer Engineering and Applications, 2023, 59(13): 229-237.
[41] 郎斌柯, 吕斌, 吴建清, 等. 基于CA-BIFPN的交通标志检测模型[J]. 深圳大学学报(理工版), 2023, 40(3): 335-343.
LANG B K, LVY B, WU J Q, et al. A traffic sign detection model based on attention mechanism and spatial pyramid[J]. Journal of Shenzhen University Science and Engineering, 2023, 40(3): 335-343. |