[1] MA K D, DUANMU Z F, ZHU H W, et al. Deep guided learning for fast multi-exposure image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 2808-2819.
[2] BAVIRISETTI D P, XIAO G, ZHAO J H, et al. Multi-scale guided image and video fusion: a fast and efficient approach[J]. Circuits Systems and Signal Processing, 2019, 38(12): 5576-5605.
[3] MA K, LI H, YONG H W, et al. Robust multi-exposure image fusion: a structural patch decomposition approach[J]. IEEE Transactions on Image Processing, 2017, 26(5): 2519-2532.
[4] LI H, MA K D, YONG H W, et al. Fast multi-scale structural patch decomposition for multi-exposure image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 5805-5816.
[5] XU H, MA J Y, ZHANG X P. MEF-GAN: multi-exposure image fusion via generative adversarial networks[J]. IEEE Transactions on Image Processing, 2020, 29: 7203-7216.
[6] DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision, 2014: 184-199.
[7] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1646-1654.
[8] DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//European Conference on Computer Vision, 2016: 391-407.
[9] HARIS M, SHAKHNAROVICH G, UKITA N. Deep back-projection networks for single image super-resolution[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(12): 4323-4337.
[10] LI Z, YANG J L, LIU Z, et al. Feedback network for image super-resolution[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3867-3876.
[11] DENG X, ZHANG Y T, XU M, et al. Deep coupled feedback network for joint exposure fusion and image super-resolution[J]. IEEE Transactions on Image Processing, 2021, 30: 3098-3112.
[12] CAI J R, GU S H, ZHANG L. Learning a deep single image contrast enhancer from multi-exposure images[J]. IEEE Transactions on Image Processing, 2018, 27(4): 2049-2062.
[13] KONG F Y, LI M X, LIU S W, et al. Residual local feature network for efficient super-resolution[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2022: 765-775.
[14] ZOU W B, TIAN Y, ZHENG W X, et al. Self-calibrated efficient transformer for lightweight super-resolution[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2022: 929-938.
[15] ZHANG T L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//European Conference on Computer Vision, 2018: 294-310.
[16] LIANG J Y, CAO J Z, SUN G L, et al. SwinIR: image restoration using swin transformer[C]//IEEE/CVF International Conference on Computer Vision Workshops, 2021.
[17] XU H, MA J Y, JIANG J J, et al. U2Fusion: a unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 502-518.
[18] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[19] MA K, ZENG K, WANG Z. Perceptual quality assessment for multi-exposure image fusion[J]. IEEE Transaction on Image Processing, 2015, 24(11): 3345-3356. |