[1] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[2] LI Y, MAO H, GIRSHICK R, et al. Exploring plain vision transformer backbones for object detection[C]//Proceedings of the European Conference on Computer Vision, 2022: 280-296.
[3] CHEN T, SAXENA S, LI L, et al. Pix2seq: a language modeling framework for object detection[EB/OL]. [2022-03-27]. https://arxiv.org/abs/2109.10852.
[4] ZHANG H, CHANG H, MA B, et al. Dynamic R-CNN: towards high quality object detection via dynamic training[C]//ECCV 2020: 16th European Conference on Computer Vision, Glasgow, UK. Cham: Springer, 2020: 260-275.
[5] 陶显, 侯伟, 徐德. 基于深度学习的表面缺陷检测方法综述[J]. 自动化学报, 2021, 47(5): 1017-1034.
TAO X, HOU W, XU D. A survey of surface defect detection methods based on deep learning[J]. Acta Automatica Sinica, 2021, 47(5): 1017-1034.
[6] LI C, HUANG Y, LI H, et al. A weak supervision machine vision detection method based on artificial defect simulation[J]. Knowledge-Based Systems, 2020, 208(4): 106466-106476.
[7] HASELMANN M, GRUBER D. Supervised machine learning based surface inspection by synthetizing artificial defects[C]//ICMLA 2017: 16th IEEE International Conference on Machine Learning and Applications, Cancun, Mexico, 2017: 390-395.
[8] HUANG C C, LIN X P. Study on machine learning based intelligent defect detection system[J]. MATEC Web of Conferences, 2018, 201(3): 1-10.
[9] LIU L, CAO D, WU Y, et al. Defective samples simulation through adversarial training for automatic surface inspection[J]. Neurocomputing, 2019, 360: 230-245.
[10] CHOU Y C, KUO C J, CHEN T T, et al. Deep-learning-based defective bean inspection with GAN-structured automated labeled data augmentation in coffee industry[J]. Applied Sciences, 2019, 9(19): 4166-4192.
[11] SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: Curran Associates Inc, 2016: 2234-2242.
[12] KARRAS T, AILA T, LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation[EB/OL]. [2018-02-26]. https://arxiv.org/abs/1710.10196.
[13] HUANG G, SUN Y, LIU Z, et al. Deep networks with stochastic depth[C]//ECCV 2016: 14th European Conference on Computer Vision, Amsterdam, The Netherlands. Cham: Springer, 2016: 646-661.
[14] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(30): 1929-1958.
[15] SZEGEDY C, ANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 2818-2826.
[16] YUN S, HAN D, OH S J, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 6022-6031.
[17] ZHANG H, CISSE M, DAUPHIN Y N, et al. mixup: beyond empirical risk minimization[EB/OL]. [2018-04-27]. https://arxiv.org/abs/1710.09412.
[18] OLSSON V, TRANHEDEN W, PINTO J, et al. Classmix: segmentation-based data augmentation for semi-supervised learning[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2021: 1369-1378.
[19] VAHDAT A, KAUTZ J. NVAE: a deep hierarchical variational autoencoder[EB/OL]. [2021-01-08]. https://arxiv.org/abs/2007.03898.
[20] ULTRALYTICS. YOLOv5[EB/OL]. [2020-05-18]. https://github.com/ultralytics/yolov5.
[21] ZHAO Z Q, ZHENG P, XU S, et al. Object detection with deep learning: a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3212-3232.
[22] KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. [2014-05-01]. https://arxiv.org/abs/1312.6114. |