[1] NIU X. A semi-automatic framework for highway extraction and vehicle detection based on a geometric deformable model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61(3/4): 170-186.
[2] PENG J, LIU Y C. Model and context‐driven building extraction in dense urban aerial images[J]. International Journal of Remote Sensing, 2005, 26(7): 1289-1307.
[3] SHI Z, YU X, JIANG Z, et al. Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(8): 4511-4523.
[4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[5] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[6] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015: 91-99.
[7] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[9] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[10] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[11] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[12] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21-37
[13] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[14] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9627-9636.
[15] LU X, JI J, XING Z, et al. Attention and feature fusion SSD for remote sensing object detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-9.
[16] GUO H, BAI H, YUAN Y, et al. Fully deformable convolutional network for ship detection in remote sensing imagery[J]. Remote Sensing, 2022, 14(8): 1850.
[17] CAO J, CHEN Q, GUO J, et al. Attention-guided context feature pyramid network for object detection[J]. arXiv:2005.11475, 2020.
[18] DONG X, QIN Y, FU R, et al. Multi-scale deformable attention and multi-level features aggregation for remote sensing object detection[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6510405.
[19] YE Y, REN X, ZHU B, et al. An adaptive attention fusion mechanism convolutional network for object detection in remote sensing images[J]. Remote Sensing, 2022, 14(3): 516.
[20] ZHOU L, ZHENG C, YAN H, et al. RepDarkNet: a multi-branched detector for small-target detection in remote sensing images[J]. ISPRS International Journal of Geo-Information, 2022, 11(3): 158.
[21] LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307.
[22] TANG L, TANG W, QU X, et al. A scale-aware pyramid network for multi-scale object detection in SAR images[J]. Remote Sensing, 2022, 14(4): 973.
[23] CHALAVADI V, JERIPOTHULA P, DATLA R, et al. mSODANet: a network for multi-scale object detection in aerial images using hierarchical dilated convolutions[J]. Pattern Recognition, 2022, 126: 108548.
[24] XIAO J, GUO H, ZHOU J, et al. Tiny object detection with context enhancement and feature purification[J]. Expert Systems with Applications, 2022: 118665.
[25] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[26] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[27] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[28] ZHU X, HU H, LIN S, et al. Deformable convnets v2: more deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9308-9316.
[29] LI X, WANG W, HU X, et al. Selective kernel networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 510-519.
[30] ZHANG X, WAN F, LIU C, et al. Freeanchor: learning to match anchors for visual object detection[C]//Advances in Neural Information Processing Systems, 2019.
[31] LONG Y, GONG Y, XIAO Z, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2486-2498.
[32] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017.
[33] LIU S, HUANG D. Receptive field block net for accurate and fast object detection[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 385-400. |