[1] SRIVASTAVA S, NARAYAN S, MITTAL S. A survey of deep learning techniques for vehicle detection from UAV images[J]. Journal of Systems Architecture, 2021, 117: 102152.
[2] 江波, 屈若锟, 李彦冬, 等. 基于深度学习的无人机航拍目标检测研究综述[J]. 航空学报, 2021, 42(4): 131-145.
JIANG B, QU R K, LI Y D, et al. Object detection in UAV imagery based on deep learning: review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 131-145.
[3] VIOLA P, JONES M J. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2): 137-154.
[4] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[5] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 42(2): 318-327.
[6] YANG F, FAN H, CHU P, et al. Clustered object detection in aerial images[J]. arXiv:1904.08008, 2019.
[7] DENG S, LI S, XIE K, et al. A global-local self-adaptive network for drone-view object detection[J]. IEEE Transactions on Image Processing, 2021, 30: 1556-1569.
[8] 刘英杰, 杨风暴, 胡鹏. 基于Cascade R-CNN的并行特征金字塔网络无人机航拍图像目标检测算法[J]. 激光与光电子学进展, 2020, 57(20): 302-309.
LIU Y J, YANG F B, HU P. Parallel FPN algorithm based on cascade R-CNN for object detection from UAV aerial images[J]. Laser & Optoelectronics Progress, 2020, 57(20): 302-309.
[9] 周阳. 基于深度学习的小目标检测方法研究与应用[D]. 成都: 电子科技大学, 2021.
ZHOU Y. Research and application on small object detection method based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
[10] 张胜虎, 马惠敏. 遮挡对于目标检测的影响分析[J]. 图学学报, 2020, 41(6): 891-896.
ZHANG S H, MA H M. An analysis of occlusion influence on object detection[J]. Journal of Graphics, 2020, 41(6): 891-896.
[11] ZHANG S, WEN L, BIAN X, et al. Occlusion-aware R-CNN: detecting pedestrians in a crowd[J]. arXiv:1807.08407, 2018.
[12] 张瑞倩, 邵振峰, PORTNOV A, 等. 多尺度空洞卷积的无人机影像目标检测方法[J]. 武汉大学学报(信息科学版), 2020, 45(6): 895-903.
ZHANG R Q, SHAO Z F, PORTNOV A, et al. Multi?scale dilated convolutional neural network for object detection in UAV images[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6): 895-903.
[13] 田永林, 王雨桐, 王建功, 等. 视觉Transformer研究的关键问题: 现状及展望[J]. 自动化学报, 2022, 48(4): 957-979.
TIAN Y L, WANG Y T, WANG J G, et al. Key problems and progress of vision Transformers: the state of the art and prospects[J]. Acta Automatica Sinica, 2022, 48(4): 957-979.
[14] VASWANI A, SHAZEER N M, PARMAR N, et al. Attention is all you need[J]. arXiv:1706.03762, 2017.
[15] LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[J]. arXiv:2103. 14030, 2021.
[16] ZHU X, SU W, LU L, et al. Deformable DETR: deformable transformers for end?to?end object detection[J]. arXiv:2010. 04159, 2021.
[17] DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[J]. arXiv:1703.06211, 2017.
[18] CHEN K, WANG J Q, PANG J M, et al. MMDetection: open MMLab detection toolbox and benchmark[J]. arXiv:1906.07155, 2019.
[19] LAW H, DENG J. CornerNet: detecting objects as paired keypoints[C]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 765-781.
[20] RUKHOVICH D, SOFIIUK K, GALEEV D, et al. IterDet: iterative scheme for object detection in crowded environments[J]. arXiv:2005.05708, 2021.
[21] 徐坚, 谢正光, 李洪均. 特征平衡的无人机航拍图像目标检测算法[J]. 计算机工程与应用, 2023, 59(6): 196-203.
XU J, XIE Z G, LI H J. Feature-balanced UAV aerial image target detection algorithm[J]. Computer Engineering and Applications, 2023, 59(6): 196-203.
[22] ALBABA B M, OZER S. SyNet: an ensemble network for object detection in UAV images[C]//25th International Conference on Pattern Recognition, 2021.
[23] SUN W, DAI L, ZHANG X, et al. RSOD: real-time small object detection algorithm in UAV-based traffic monitoring[J]. Applied Intelligence, 2022, 52(8): 8448-8463.
[24] LI C, YANG T, ZHU S, et al. Density map guided object detection in aerial images[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW), Seattle, WA, USA, 2020: 737-746.
[25] YANG C, HUANG Z, WANG N. QueryDet: cascaded sparse query for accelerating high-resolution small object detection[J]. arXiv:2103.09136, 2021.
[26] LIU Y, YANG F, HU P. Small-object detection in UAV-captured images via multi-branch parallel feature pyramid networks[J]. IEEE Access, 2020, 8: 145740-145750.
[27] ZHANG X, IZQUIERDO E, CHANDRAMOULI K. Dense and small object detection in UAV vision based on cascade network[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea (South), 2019: 118-126.
[28] ZHANG J, HUANG J, CHEN X, et al. How to fully exploit the abilities of aerial image detectors[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea (South), 2019: 1-8. |