[1] 杨永胜, 邓淼磊, 李磊, 等. 基于深度学习的行人重识别综述[J]. 计算机工程与应用, 2022, 58(9): 51-66.
YANG Y S, DENG M L, LI L, et al. Overview of pedestrian re-identification based on deep learning[J]. Computer Engineering and Applications, 2022, 58(9): 51-66.
[2] 叶钰, 王正, 梁超, 等. 多源数据行人重识别研究综述[J]. 自动化学报, 2020, 46(9): 1869-1884.
YE Y, WANG Z, LIANG C, et al. A survey on multi-source person re-identification[J]. Acta Automatica Sinica, 2020, 46(9): 1869-1884.
[3] 简彩仁, 翁谦, 夏靖波. 系数增强最小二乘回归子空间聚类法[J]. 计算机工程与应用, 2022, 58(20): 73-78.
JIAN C R, WENG Q, XIA J B. Coefficient enhanced least square regression subspace clustering method[J]. Computer Engineering and Applications, 2022, 58(20): 73-78.
[4] 柳恩涵, 张锐, 赵硕, 等. 一种基于视频预测的红外行人目标跟踪方法[J]. 哈尔滨工业大学学报, 2020, 52(10): 192-200.
LIU E H, ZHANG R, ZHAO S, et al. Infrared pedestrian target tracking method based on video prediction[J]. Journal of Harbin Institute of Technology, 2020, 52(10): 192-200.
[5] LIN X, REN P, YEH C H, et al. Unsupervised person re-identification: a systematic survey of challenges and solutions[J]. arXiv:2109.06057, 2021.
[6] LIN Y, DONG X, ZHENG L, et al. A bottom-up clustering approach to unsupervised person re-identification[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 8738-8745.
[7] WANG D, ZHANG S. Unsupervised person re-identification via multi-label classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10981-10990.
[8] DYER C. Notes on noise contrastive estimation and negative sampling[J]. arXiv:1410.8251, 2014.
[9] YANG F, ZHONG Z, LUO Z, et al. Joint noise-tolerant learning and meta camera shift adaptation for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4855-4864.
[10] DENG W, ZHENG L, YE Q, et al. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
[11] GE Y X, CHEN D P, LI H S. Mutual mean-teaching: pseudo label refinery for unsupervised domain adaptation on person re-identification[J]. arXiv:2001.01526, 2020.
[12] PATRA B, MONIZ J R A, GARG S, et al. Bilingual lexicon induction with semi-supervision in non-isometric embedding spaces[J]. arXiv:1908.06625, 2019.
[13] 陈璠, 彭力. 多层级重叠条纹特征融合的行人重识别[J]. 计算机科学与探索, 2021, 15(9): 1753-1761.
CHEN F, PENG L. Person re-identification based on multi-level feature fusion with overlapping stripes[J]. Journal of Frontiers of Computer Science & Technology, 2021, 15(9): 1753-1761.
[14] YU J, OH H. Unsupervised person re-identification via multi-label prediction and classification based on graph-structural insight[J]. arXiv:2106.08798, 2021.
[15] SUN Y, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C]//European Conference on Computer Vision. Cham: Springer, 2017.
[16] LUO H, JIANG W, GU Y, et al. A strong baseline and batch normalization neck for deep person re-identification[J]. IEEE Transactions on Multimedia, 2020, 22(10): 2597-2609.
[17] CHEN H, WANG Y, LAGADEC B, et al. Joint generative and contrastive learning for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2004-2013.
[18] HAN B, YAO Q, YU X, et al. Co-teaching: robust training of deep neural networks with extremely noisy labels[C]//Advances in Neural Information Processing Systems, 2018.
[19] ESTER M. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996.
[20] MACQUEEN J. Some Methods for? classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967: 281-297.
[21] SCHROFF F, KALENICHENKO D, PHILBIN J. Facenet: a unified embedding for face recognition and clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 815-823.
[22] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[23] ZHENG L, SHEN L, TIAN L, et al. Scalable person re-identification: a benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1116-1124.
[24] RISTANI E, SOLERA F, ZOU R, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]//European Conference on Computer Vision. Cham: Springer, 2016: 17-35.
[25] ZHONG Z, ZHENG L, KANG G, et al. Random erasing data augmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 13001-13008.
[26] SOHN K. Improved deep metric learning with multi-class N-pair loss objective[C]//Neural Information Processing Systems, 2016.
[27] TONG X, TIAN X, YI Y, et al. Learning from massive noisy labeled data for image classification[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
[28] LI M X, ZHU X T, GONG S G. Unsupervised person re-identification by deep learning tracklet association[J]. ACM Transactions on Multimedia Computing Communications & Applications, 2018, 14(4): 1-18.
[29] DAI Z, WANG G, ZHU S, et al. Cluster contrast for unsupervised person re-identification[J]. arXiv:2103.11568, 2021.
[30] HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification[J]. arXiv:1703.07737, 2017.
[31] OORD A, LI Y, VINYALS O. Representation learning with contrastive predictive coding[J]. arXiv:1807.03748, 2018.
[32] WEI L, ZHANG S, WEN G, et al. Person transfer GAN to bridge domain gap for person re-identification[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
[33] SUN X, ZHENG L. Dissecting person re-identification from the viewpoint of viewpoint[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 608-617.
[34] LIU X, WU L, MA H, et al. Large-scale vehicle re-identification in urban surveillance videos[C]//IEEE International Conference on Multimedia and Expo (ICME), 2016.
[35] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA, 2009.
[36] 向朝参, 李耀宇, 冯亮, 等. 基于深度强化学习的智联网汽车感知任务分配[J]. 计算机学报, 2022, 45(5): 918-934.
XIANG C S, LI Y Y, FENG L, et al. Near-optimal vehicular crowdsensing task allocation empowered by deep reinforcement learning[J]. Chinese Journal of Computers, 2022, 45(5): 918-934.
[37] YU H X, ZHENG W S, WU A, et al. Unsupervised person re-identification by soft multilabel learning[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
[38] ZHAO F, LIAO S, XIE G S, et al. Unsupervised domain adaptation with noise resistible mutual-training for person re-identification[C]//European Conference on Computer Vision. Cham: Springer, 2020.
[39] ZHAI Y P, YE Q X, LU S J, et al. Multiple expert brainstorming for domain adaptive person re-identification[C]//European Conference on Computer Vision. Cham: Springer, 2020.
[40] ZENG K, NING M, WANG Y, et al. Hierarchical clustering with hard-batch triplet loss for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 13657-13665.
[41] LI J, ZHANG S. Joint visual and temporal consistency for unsupervised domain adaptive person re-identification[C]//European Conference on Computer Vision. Cham: Springer, 2020: 483-499.
[42] QIN H, XIE W, LI Y, et al. PTGAN: a proposal-weighted two-stage GAN with attention for hyperspectral target detection[C]//2021 IEEE International Geoscience and Remote Sensing Symposium, 2021: 4428-4431.
[43] ZHONG Z, ZHENG L, LUO Z, et al. Invariance matters: exemplar memory for domain adaptive person re-identification[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
[44] FU Y, WEI Y, WANG G, et al. Self-similarity grouping: a simple unsupervised cross domain adaptation approach for person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6112-6121.
[45] GE Y, ZHU F, CHEN D, et al. Self-paced contrastive learning with hybrid memory for domain adaptive object re-id[C]//Advances in Neural Information Processing Systems, 2020: 11309-11321. |