[1] SOLER L, DELINGETTE H, MALANDAIN G, et al. Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery[J]. Computer Aided Surgery, 2001, 6(3): 131-142.
[2] ABD-ELAZIZ O F, SAYED M S, ABDULLAH M I. Liver tumors segmentation from abdominal CT images using region growing and morphological processing[C]//Proceedings of the 2014 International Conference on Engineering and Technology, Cairo, Apr 19-20, 2014: 1-6.
[3] KUO C L, CHENG S C, LIN C L, et al. Texture-based treatment prediction by automatic liver tumor segmentation on computed tomography[C]//Proceedings of the 2017 International Conference on Computer, Information and Telecommunication Systems, Dalian, Jul 21-23, 2017: 128-132.
[4] CONZE P H, NOBLET V, ROUSSEAU F, et al. Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(2): 223-233.
[5] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241.
[6] ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-net architecture for medical image segmentation[M]//Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer, 2018: 3-11.
[7] XIAO X, LIAN S, LUO Z, et al. Weighted Res-UNet for high-quality retina vessel segmentation[C]//Proceedings of the 2018 9th International Conference on Information Technology in Medicine and Education, Hangzhou, Oct 19-21, 2018: 327-331.
[8] 张文秀, 朱振才, 张永合, 等. 基于残差块和注意力机制的细胞图像分割方法[J]. 光学学报, 2020, 40(17): 1710001.
ZHANG W X, ZHU Z C, ZHANG Y H, et al. Cell image segmentation method based on residual block and attention mechanism[J]. Acta Optica Sinica, 2020, 40(17): 1710001.
[9] CHRIST P F, ELSHAER M E A, ETTLINGER F, et al. Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields[C]//Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Oct 17-21, 2016. Cham: Springer, 2016: 415-423.
[10] CHEN X, ZHANG R, YAN P. Feature fusion encoder decoder network for automatic liver lesion segmentation[C]//Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging, Venice, Apr 8-11, 2019: 430-433.
[11] FAN T, WANG, LI Y, et al. MA-Net: a multi-scale attention network for liver and tumor segmentation[J]. IEEE Access, 2020, 8: 179656-179665.
[12] 刘一鸣, 肖志勇. 基于特征融合的肝脏肿瘤自动分割方法[J]. 激光与光电子学进展, 2021, 58(14): 458-466.
LIU Y M, XIAO Z Y. Automatic segmentation of liver tumors based on feature fusion[J]. Laser & Optoelectronics Progress, 2021, 58(14): 458-466.
[13] HONG L, WANG R, LEI T, et al. Qau-Net: quartet attention U-net for liver and liver-tumor segmentation[C]//Proceedings of the 2021 IEEE International Conference on Multimedia and Expo, Shenzhen, Jul 5-9, 2021: 1-6.
[14] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 6000-6010.
[15] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 213-229.
[16] LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021: 10012-10022.
[17] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018: 7794-7803.
[18] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[J]. arXiv:2010. 1929, 2020.
[19] CHEN J, LU Y, YU Q, et al. TransUNet: transformers make strong encoders for medical image segmentation[J]. arXiv:2102.04306, 2021.
[20] VALANARASU J M J, OZA P, HACIHALILOGLU I, et al. Medical transformer: gated axial-attention for medical image segmentation[C]//Proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, Strasbourg, Sep 27-Oct 1, 2021. Cham: Springer, 2021: 36-46.
[21] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[22] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 22-25, 2017: 2881-2890.
[23] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 801-818.
[24] 高飞, 闫镔, 陈健, 等. 基于堆叠树形聚合结构空洞卷积的肝脏肿瘤分割[J]. 光学学报, 2021, 41(18): 73-84.
GAO F, YAN B, CHEN J, et al. Segmentation of liver tumors based on cavity convolution of stacked tree polymeric structures[J]. Acta Optica Sinica, 2021, 41(18): 73-84.
[25] DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017: 764-773.
[26] PENG Z, HUANG W, GU S, et al. Conformer: local features coupling global representations for visual recognition[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021: 367-376.
[27] GAO Y, ZHOU M, METAXAS D N. UTNet: a hybrid transformer architecture for medical image segmentation[C]//Proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, Strasbourg, Sep 27-Oct 1, 2021. Cham: Springer, 2021: 61-71. |