[1] 熊学堂, 谭忆秋, 唐嘉明, 等. 基于探地雷达的沥青路面内部病害快速识别[J]. 华中科技大学学报 (自然科学版), 2023, 51(11): 120-127.
XIONG X T, TANG Y Q, TANG J M, et al. Rapid recognition of asphalt pavement internal diseases based on ground penetrating radar[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(11): 120-127.
[2] 陈卫. 基于超声波技术的公路桥梁结构病害检测方法[J]. 自动化应用, 2023, 64(7): 176-178.
CHEN W. Detection method of highway bridge structure disease based on ultrasonic technology[J]. Automation Application, 2023, 64(7): 176-178.
[3] JING P, YU H, HUA Z, et al. Road crack detection using deep neural network based on attention mechanism and residual structure[J]. IEEE Access, 2023, 11: 919-929.
[4] ANASTASIIA K, XIA K W, ARTEM K, et al. Road surface crack detection method based on conditional generative adversarial networks[J]. Sensors, 2021, 21: 7405.
[5] DENG L, ZHANG A, GUO J, et al. An integrated method for road crack segmentation and surface feature quantification under complex backgrounds[J]. Remote Sensing, 2023, 15(6): 1530.
[6] CHUN C, RYU S K. Road surface damage detection using fully convolutional neural networks and semi-supervised learning[J]. Sensors, 2019, 19(24): 5501.
[7] 安学刚, 党建武, 王阳萍, 等. 基于YOLOv4的无人机影像路面病害检测方法[J]. 无线电工程, 2023, 53(6): 1285-1294.
AN X G, DANG J W, WANG Y P, et al. Road surface disease detection method based on YOLOv4 UAV image[J]. Radio Engineering, 2023, 53(6): 1285-1294.
[8] 杜娟, 崔少华, 晋美娟, 等. 改进YOLOv7的复杂道路场景目标检测算法[J]. 计算机工程与应用, 2024, 60(1): 96-103.
DU J, CUI S H, JIN M J, et al. Improved the complex road scene object detection algorithm of YOLOv7[J]. Computer Engineering and Applications, 2024, 60(1): 96-103.
[9] 李松, 史涛, 井方科. 改进YOLOv8的道路损伤检测算法[J]. 计算机工程与应用, 2023, 59(23): 165-174.
LI S, SHI T, JING F K. Road surface disease detection method based on YOLOv4 UAV image[J]. Computer Engineering and Applications, 2023, 59(23): 165-174.
[10] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017.
[11] LIU Z, MAO H, WU C Y, et al. A convnet for the 2020s[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 11976-11986.
[12] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015.
[13] DING X, ZHANG X, MA N, et al. RepVGG: making VGG-style convnets great again[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13733-13742.
[14] DING X, ZHANG X, HAN J, et al. Diverse branch block: building a convolution as an inception-like unit[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10886-10895.
[15] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[16] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision, 2016: 21-37.
[17] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767,2018.
[18] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934,2020.
[19] GE Z, LIU S, WANG F, et al. Yolox: exceeding yolo series in 2021[J]. arXiv:2107.08430,2021.
[20] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: tranable bag-of-freebies sets new state-of-the-art for real-time object de-tectors[J]. arXiv:2207.02696,2022.
[21] LYU C, ZHANG W, HUANG H, et al. Rtmdet: an empirical study of designing real-time object detectors[J]. arXiv:2212.07784,2022.
[22] XU S, WANG X, LYU W, et al. PP-YOLOE: an evolved version of YOLO[J]. arXiv:2203.16250,2022. |