[1] 张文杰, 黄体伟. 我国煤矿安全法规体系的现状及展望 [J]. 煤矿安全, 2020, 51(10): 10-17.
ZHANG W J, HUANG T W. Current situation and prospect of coal mine safety regulation system in China[J]. Coal Mine Safety, 2020, 51(10): 10-17.
[2] 李磊, 曹礼荣, 李世银, 等. 非正式组织视角下领导行为对煤矿工人不安全行为博弈分析[J]. 西安科技学报, 2022, 42(6): 1088-1095.
LI L, CAO L R, LI S Y, et al. Game analysis of coal miners’ unsafe behaviors based on informal organization leadership [J]. Journal of Xi’an University of Science and Technology, 2022, 42(6): 1088-1095.
[3] SINGH N, GUNJAN V K, CHAUDHARY G, et al. IoT enabled helmet to safeguard the health of mine workers[J]. Computer Communications, 2022, 193: 1-9.
[4] 张阳婷, 黄德启, 王东伟, 等. 基于深度学习的目标检测算法研究与应用综述[J]. 计算机工程与应用, 2023, 59(18): 1-13.
ZHANG Y T, HUANG D Q, WANG D W, et al. Review on research and application of deep learning-based target detection algorithms[J]. Computer Engineering and Applications, 2023, 59(18): 1-13.
[5] DONG S, WANG P, ABBAS K. A survey on deep learning and its applications[J]. Computer Science Review, 2021, 40: 318-322.
[6] 贾澎涛, 贾伟. 煤矿井下视频多目标轨迹跟踪算法研究[J]. 计算机工程与应用, 2018, 54(2): 222-227.
JIA P T, JIA W. Recherche algorithm on coal mine multi-target trajectory tracking[J]. Computer Engineering and Applications, 2018, 54(2): 222-227.
[7] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014: 580-587.
[8] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015: 1440-1448.
[9] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 779-788.
[11] TAN M X, LE Q V. EfficientNetV2: smaller models and faster training[C]//International Conference on Machine Learning (ICML), 2021: 215-223.
[12] ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2021: 978-992.
[13] GU Y W, XU S K, WANG Y R, et al. An advanced deep learning approach for safety helmet wearing detection[C]//IEEE Int Congr on Cybermat (CYBER), 2019: 102-113.
[14] 王建波, 武友新. 改进YOLOv4-tiny的安全帽佩戴检测算法[J]. 计算机工程与应用, 2023, 59(4): 183-190.
WANG J B, WU Y X. Safety helmet wearing detection algorithm of improved YOLOv4-tiny[J]. Computer Engineering and Applications, 2023, 59(4): 183-190.
[15] 宋晓凤, 吴云军, 刘冰冰, 等. 改进YOLOv5s算法的安全帽佩戴检测[J]. 计算机工程与应用, 2023, 59(2): 194-201.
SONG X F, WU Y J, LIU B B, et al. Improved YOLOv5s algorithm for helmet wearing detection[J]. Computer Engineering and Applications, 2023, 59(2): 194-201.
[16] 王玲敏, 段军, 辛立伟. 引入注意力机制的YOLOv5安全帽佩戴检测方法[J]. 计算机工程与应用, 2022, 58(9): 303-312.
WANG L M, DUAN J, XIN L W. YOLOv5 helmet wear detection method with introduction of attention mechanism[J]. Computer Engineering and Applications, 2022, 58(9): 303-312.
[17] ZHAO Z P, HE C, ZHAO G M, et al. RA-YOLOX: re-parameterization align decoupled head and novel label assignment scheme based on YOLOX[J]. Pattern Recognition, 2023, 140: 22-26.
[18] WU F, JIN G Q, GAO M Y, et al. Helmet detection based on improved YOLOv3 deep model[C]//Proceedings of the IEEE International Conference on Networking, 2019: 650-658.
[19] SONG H J, ZHANG X H, SONG J, et al. Detection and tracking of safety helmet based on DeepSort and YOLOv5[J]. Multimedia Tools and Applications, 2023, 82(7): 10781-10794. |