[1] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[2] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE Conference on Computer Vision & Pattern Recognition, 2017: 6517-6525.
[3] REDMON J, FARHADI A. YOLOv3: an incremental improvement[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018.
[4] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[5] REN S, HE K, GIRSHIVK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[6] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks forsemantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[7] RONNEBERGER O, FISCHER P, BROX T. U-NET: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computingand Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[8] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[J]. 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, 2017: 936-944.
[9] HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[C]//IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, 2017: 1-9.
[10] SANDLER M, HOWARD A, ZHU M, et al. MobileNet V2: inverted residuals and linear bottlenecks[C]//IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 4510-4520.
[11] HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetV3[C]//Proceedings of the IEEE International Conference on Computer Vision, 2019.
[12] BARRET Z, QUOC V L. Neural architecture search with reinforcement learning[J]. arXiv:1611.01578, 2016.
[13] WU B C, DAI X L, ZHANG P Z, et al. FBNet: hardware-aware efficient ConvNet design via differentiable neural architecture search[C]//Proceddings of the CVPR, 2019.
[14] 张立艺, 武文红, 牛恒茂, 等. 深度学习中的安全帽检测算法应用研究综述[J]. 计算机工程与应用, 2022, 58(16): 1-17.
ZHANG L Y, WU W H, NIU H M, et al. Summary of application research on helmet detection algorithm based on deep learning[J]. Computer Engineering and Applications, 2022, 58(16): 1-17.
[15] ZHOU X, WANG D, KRHENBUHL P. Objects as points[J]. arXiv:1904.07850,2019.
[16] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[J]. arXiv:1709.01507,2017. |