[1] CHIARA P, FRANCESCA M, MARIA C, et al. Analysis of complexity in the EEG activity of Parkinson’s disease patients by means of approximate entropy[J]. GeroScience, 2022, 44: 1599-1607.
[2] XIE J, LU Y, LEI Z, et al. Conditional entropy based classifier chains for multi-label classification[J]. Neurocomputing, 2019, 335(28): 185-194.
[3] MUKESH K, DILBAG S, DEEPAK K K. Identifying heart-brain interactions during internally and externally operative attention using conditional entropy[J]. Biomedical Signal Processing and Control, 2020, 57: 101826.
[4] RICHMAN J, RANDALL M J. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278(6): 2039-2049.
[5] CHEN W T, WANG Z Z, XIE H B, et al. Characterization of surface EMG signal based on fuzzy entropy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(2): 266-272.
[6] ROSTAGHI C M, AZAMI H. Dispersion entropy: a measure for time-series analysis[J]. IEEE Signal Processing Letters, 2016, 23(5): 610-614.
[7] SONG Y D, ZHANG J X. Discriminating preictal and interictal brain states in intracranial EEG by sample entropy and extreme learning machine[J]. Journal of Neuroscience Methods, 2016, 257: 45-54.
[8] 杨洋, 郭兴明, 郑伊能, 等. 基于ICEEMDAN-MSE的左室舒张功能障碍心音信号的识别研究[J]. 仪器仪表学报, 2022, 43(1): 274-281.
YANG Y, GUO X M, ZHENG Y N, et al. Study on left ventricular diastolic dysfunction heart sound signals identification based on ICEEMDAN-MSE[J]. Chinese Journal of Scientific Instrument, 2022, 43(1): 274-281.
[9] 于重重, 宁亚倩, 秦勇, 等. 基于T-SNE样本熵和TCN的滚动轴承状态退化趋势预测[J]. 仪器仪表学报, 2019, 40(8): 39-46.
YU C C, NING Y Q, QIN Y, et al. Prediction of rolling bearing state degradation trend based on T-SNE sample entropy and TCN[J]. Chinese Journal of Scientific Instrument, 2019, 40(8): 39-46.
[10] 沈晓燕, 王雪梅, 王燕. 基于样本熵和模式识别的脑电信号识别算法研究[J]. 计算机工程与科学, 2020, 42(8): 1482-1488.
SHEN X Y, WANG X M, WANG Y. An EEG signal recognition algorithm based on sample entropy and BP neural network[J]. Computer Engineering and Science, 2020, 42(8): 1482-1488.
[11] XIE H B, HE W X, LIU H. Measuring time series regularity using nonlinear similarity-based sample entropy[J]. Physics Letters A, 2008, 372(48): 7140-7146.
[12] MOLINA-PICó A, CUESTA-FRAU D, ABOY M, et al. Comparative study of approximate entropy and sample entropy robustness to spike[J]. Artificial Intelligence in Medicine, 2011, 53(2): 97-106.
[13] AZAMI H, LI P, ARNOLD S E, et al. Fuzzy entropy metrics for the analysis of biomedical signals: assessment and comparison[J]. IEEE Access, 2019, 7: 104833-104847.
[14] 刘澄玉, 贺思艳, 李鹏, 等. 互模糊熵中隶属函数的改进和影响分析[J]. 山东大学学报(工学版), 2014, 44(1): 63-68.
LIU C Y, HE S Y, LI P, et al. Refining of the membership function in cross fuzzy entropy and its influence[J]. Journal of Shandong University (Engineering Science), 2014, 44(1): 63-68.
[15] AZAMI M, ESCUDERO J. Amplitude- and fluctuation-based dispersion entropy[J]. Entropy, 2018, 20(3): 1-21.
[16] AZAMI H, ROSTAGHI M, ABASOLO D, et al. Refined composite multiscale dispersion entropy and its application to biomedical signals[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(12): 2872-2879.
[17] ROSTAGHI M, REZA M, AZAMI H. Application of dispersion entropy to status characterization of rotary machines[J]. Journal of Sound and Vibration , 2019, 438: 291-308.
[18] KAFANTARIS E, PIPER I, LO T, et al. Augmentation of dispersion entropy for handling missing and outlier samples in physiological signal monitoring[J]. Entropy, 2020, 22(3): 319.
[19] KAFANTARIS E, PIPER I, LO T, et al. Application of dispersion entropy to healthy and pathological heartbeat ECG segments[C]//Proceeding of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019: 2269-2272.
[20] TRIPATHY R K, ACHARYA U R. Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework[J]. Biocybernetics and Biomedical Engineering, 2018, 38(4): 890-902.
[21] YAN X, LIU Y, HUANG D, et al. A new approach to health condition identification of rolling bearing using hierarchical dispersion entropy and improved Laplacian score[J]. Structural Health Monitoring, 2020, 20(3): 1169-1195.
[22] 杨潇谊, 吴建德, 马军. 基于散布熵和余弦欧氏距离的滚动轴承性能退化评估方法[J]. 电子测量与仪器学报, 2020, 32(7): 15-24.
YANG X Y, WU J D, MA J. Rolling bearing performance degradation assessment method based on dispersion entropy and cosine Euclidean distance[J]. Journal of Electronic Measurement and Instrumentation, 2020, 32(7): 15-24.
[23] ROSTAGHI M, KHATIBI M M, ASHORY M, et al. Fuzzy dispersion entropy: a nonlinear measure for signal analysis[J]. IEEE Transactions on Fuzzy Systems, 2021, 30(9): 3785-3796.
[24] SHANG D, SHANG P J, ZHANG Z Q. Efficient synchronization estimation for complex time series using refined cross-sample entropy measure[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 94: 105556.
[25] HéNON M. A two-dimensional mapping with a strange attractor[J]. Communications in Mathematical Physics, 1976, 50: 69-77.
[26] AZAMI H, FERNANDEZ A, ESCUDERO J. Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis[J]. Medical & Biological Engineering & Computing, 2017, 55: 2037-2052.
[27] ANDRZEJAK R G, LEHNERTZ K, MORMANN F, et al. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state[J]. Physical Review E, 2001, 64(6): 061907.
[28] ZHAO Z, LI T, WU J, et al. Deep learning algorithms for rotating machinery intelligent diagnosis: an open source benchmark study[J]. ISA Transactions, 2020, 107: 224-255.
[29] FRENKEL-TOLEDO S, SOLOMON J M, SHAH A, et al. Tonic stretch reflex threshold as a measure of spasticity after stroke: reliability, minimal detectable change and responsiveness[J]. Clinical Neurophysiology, 2021, 132(6): 1226-1233.
[30] COSTA M, GOLDBERGER A L, PENG C K. Multiscale entropy analysis of complex physiologic time series[J]. Physical Review Letters, 2002, 89(6): 1-18.
[31] LI C, ZHENG J, PAN H, et al. Refined composite multivariate multiscale dispersion entropy and its application to fault diagnosis of rolling bearing[J]. IEEE Access, 2019, 7: 47663-47673.
[32] SONG E, KE Y, YAO C, et al. Fault diagnosis method for high-pressure common rail injector based on IFOA-VMD and hierarchical dispersion entropy[J]. Entropy, 2019, 21(10): 923.
[33] WEI Y, YANG Y, XU M, et al. Intelligent fault diagnosis of planetary gearbox based on refined composite hierarchical fuzzy entropy and random forest[J]. ISA Transactions, 2021, 109: 340-351.
[34] ZHOU R, WANG X, WAN J, et al. EDM-fuzzy: an Euclidean distance based multiscale fuzzy entropy technology for diagnosing faults of industrial systems[J]. IEEE Transactions on Industrial Informatics, 2020, 17(6): 4046-4054.
[35] YAN X, XU Y, JIA M. Intelligent fault diagnosis of rolling-element bearings using a self-adaptive hierarchical multiscale fuzzy entropy[J]. Entropy, 2021, 23(9): 1-5.
[36] LI Y, TANG B, GENG B, et al. Fractional order fuzzy dispersion entropy and its application in bearing fault diagnosis[J]. Fractal and Fractional, 2022, 6(10): 544. |