计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (2): 133-140.DOI: 10.3778/j.issn.1002-8331.1809-0368
杜轻,辛守庭,雷新宇,于海涛
DU Qing, XIN Shouting, LEI Xinyu, YU Haitao
摘要: 脑电检测是癫痫疾病诊断的重要手段,但基于脑电信号特征的人工标记方法,对癫痫发作状态识别的准确度较低。将脑功能网络与TSK模糊系统相结合,提出一种癫痫脑电信号识别的新方法。通过分析多通道脑电信号之间的同步性,构建癫痫患者的脑功能网络,采用复杂网络方法提取特征参数;以脑网络参数为输入特征建立TSK模糊系统模型,通过监督式学习训练分类器,用于识别癫痫发作期的脑电波形。实验结果证明了该方法的有效性,模糊分类器对癫痫发作状态识别的准确度达到98.36%,99.48%敏感度和97.24%特异度。该方法将复杂网络与机器学习算法相融合,为通过脑电检测识别癫痫疾病状态提供了新方法,具有重要的应用价值。