计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (22): 154-159.DOI: 10.3778/j.issn.1002-8331.1908-0396

• 模式识别与人工智能 • 上一篇    下一篇

抑郁症患者脑电导联选择算法及分类研究

沈潇童,毕卉,王苏弘,李文杰,邹凌   

  1. 1.常州大学 信息科学与工程学院,江苏 常州 213164
    2.常州市生物医学信息技术重点实验室,江苏 常州 213164
    3.常州市第一人民医院,江苏 常州 213003
  • 出版日期:2020-11-15 发布日期:2020-11-13

Study on Selection Algorithm of Channels and Classification of EEG in Patients with Depression

SHEN Xiaotong, BI Hui, WANG Suhong, LI Wenjie, ZOU Ling   

  1. 1.School of Information Science & Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
    2.Changzhou Key Laboratory of Biomedical Information Technology, Changzhou, Jiangsu 213164, China
    3.The First People’s Hospital of Changzhou, Changzhou, Jiangsu 213003, China
  • Online:2020-11-15 Published:2020-11-13

摘要:

基于EGI公司64导脑电采集系统,采集了16位青少年抑郁症患者和16位正常人静息态下闭眼4分钟的脑电数据。运用频谱不对称分析法(Spectral Asymmetry Index,SASI)和去趋势波动分析(Detrended Fluctuation Analysis,DFA)算法提取脑电时域和频域特征。针对提取的特征的导联,一方面,选择最佳电极Pz作为分类的导联,另一方面,通过遗传算法对所有导联进行筛选,将筛选后的导联特征用于分类。使用支持向量机(Support Vector Machine,SVM)在单导联和多导联的情况下,对抑郁症患者和正常人进行分类,结果发现,单导联下,使用SVM分类器对抑郁组和对照组的SASI和DFA结果进行分类,分类精度分别为45.5%和51.5%,使用遗传算法的分类精度分别为78.1%和90.6%,SASI算法的计算实时性优于DFA算法,DFA算法的准确性优于SASI算法。该研究为抑郁症的计算机辅助诊断提供了理论依据。

关键词: 脑电信号(EEG), 抑郁症, 频谱不对称分析(SASI), 去趋势波动分析(DFA)

Abstract:

Based on the 64-channel EEG acquisition system of EGI Company, the EEG data of 16 adolescent patients with depression and 16 healthy patients with eyes closed for 4 minutes at resting-state data are collected. Secondly, Spectral Asymmetry Index(SASI) and Detrended Fluctuation Analysis(DFA) algorithm are applied to extract EEG time-frequency domain features. For the extracted features from the channel, on the hand, the features from the single optimal electrode Pz are selected as the channel of classification; on the other hand, the features from the multi-channels selected by Genetic Algorithm(GA) are used for classification. Finally, the Support Vector Machine(SVM) is applied to a single channel and multi-channels to classify depression patients and healthy people. The classification accuracies of the single channel are 45.5% and 51.5%, respectively, while the classification accuracies of the multi-channels selected by GA are 78.1% and 90.6%, respectively. Experimental results show that SASI algorithm is better than that of DFA real-time algorithm of computing, and the DFA algorithm accuracy is better than SASI algorithm. This study provides a theoretical basis for computer aided diagnosis of depression.

Key words: Electroencephalogram(EEG), depression, Spectral Asymmetry Index(SASI), Detrended Fluctuation Analysis(DFA)