计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (21): 164-169.DOI: 10.3778/j.issn.1002-8331.1908-0314
周奕隽,李冬冬,王喆,高大启
ZHOU Yijun, LI Dongdong, WANG Zhe, GAO Daqi
摘要:
近年来,通过分析脑电图(EEG)信号来实现情感识别的课题越来越被研究者所重视。为了丰富特征的表示能力,获得更高的情感识别分类准确率,尝试将语音信号特征梅尔频率倒谱系数MFCC应用于脑电信号。在对EEG信号小波变换的基础上将提取得到的MFCC特征与EEG特征相互融合,通过利用深度残差网络(ResNet18)的特性进行情感分类识别。实验结果表明,比起传统的单一利用EEG特征,添加了MFCC特征使得情感维度Arousal和Valence两者的识别准确率分别提升了6%和4%,达到了86.01%和85.46%,从而提升了情感的识别准确度。