计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (3): 189-195.DOI: 10.3778/j.issn.1002-8331.1911-0163
王殿伟,赵梦影,刘颖,宋海军,谢永军
WANG Dianwei, ZHAO Mengying, LIU Ying, SONG Haijun, XIE Yongjun
摘要:
针对SSD算法在检测全景视频图像车辆目标时存在准确率低、漏检率高的问题,构建了一种改进的SSD网络,命名为R-SSD,并提出了一种基于R-SSD的全景视频图像中车辆目标检测算法。在原SSD网络之前增加了一个RPN*网络,目的在于过滤负样本先验框并粗略调整先验框的位置和大小,为后续回归提供好的初始条件。在原SSD和RPN*网络之间构建了传输转换模块,实现两个网络间的特征融合,并增加低层特征信息,从而提高目标的检测效果。在同时兼顾了RPN*网络和SSD*网络损失函数的基础上提出了新的损失函数,应用了二分类和多分类的方法,使回归操作更加精确。将采集的全景视频图像数据分为训练集和测试集,通过对比实验,表明提出的R-SSD算法检测精度可达90.78%,明显优于SSD算法,可较好地解决全景目标车辆检测中误检率较高、漏检率较高等问题。