计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (3): 182-188.DOI: 10.3778/j.issn.1002-8331.1911-0117
姚可欣,曹卫群
YAO Kexin, CAO Weiqun
摘要:
手写输入可通过少量的书写进而传递丰富的文本信息,如何准确地对手写简笔画进行识别越来越引起了各界研究者们的关注。传统的简笔画识别算法多基于简笔画相对固定的结构特性进行识别。此种方法对于笔迹清晰、结构相对简单的简笔画具有较高的识别率,但是随着分类数以及简笔画自身结构复杂度的增加这种方法存在一定局限性,往往会造成误分类。为取得更好的识别效果,该研究以具有固定参照模板的简笔画作为研究对象,使用图像生成算法对手写笔迹进行预处理,并提出了一种基于卷积神经网络的简笔画识别模型(Trans-Net),其中运用迁移学习技术解决了样本库中数据量小的问题。实验结果表明,该方法能够对输入的简笔画笔迹进行有效地特征提取,并且对样本库中150类简笔画对象的平均识别精度达到了94.1%。