计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (8): 10-25.DOI: 10.3778/j.issn.1002-8331.2012-0449
许德刚,王露,李凡
XU Degang, WANG Lu, LI Fan
摘要:
目标检测是计算机视觉的一个重要研究方向,其目的是精确识别给定图像中特定目标物体的类别和位置。近年来,深度卷积神经网络(Deep Convolutional Neural Networks,DCNN)所具有的特征学习和迁移学习能力,在目标检测算法特征提取、图像表达、分类与识别等方面取得了显著进展。介绍了基于深度学习目标检测算法的研究进展、常用数据集特点以及性能指标评价的关键参数,对比分析了双阶段、单阶段以及其他改进算法的网络结构和实现方式。阐述了算法在人脸、显著目标、行人、遥感图像、医学图像、粮虫等检测领域的应用进展,结合当前存在的问题和挑战,展望分析了其未来的研究方向。