[1] 江波, 屈若锟, 李彦冬, 等. 基于深度学习的无人机航拍目标检测研究综述[J]. 航空学报 , 2021, 42(4): 137-151.
JIANG B, QU R K, LI Y D, et al. Object detection in UAV imagery based on deep learning: review[J]. Acta Aeronautica ET Astronautica Sinica, 2021, 42(4): 137-151.
[2] 朱学岩, 张新伟, 顾梦梦, 等. 基于无人机可见光图像的云杉计数方法[J]. 林业工程学报, 2021, 6(4): 140-146.
ZHU X Y, ZHANG X W, GU M M, et al. Spruce counting method based on UAV visible images[J]. Journal of Forestry Engineering, 2021, 6(4): 140-146.
[3] 张艳, 张明路, 吕晓玲, 等. 深度学习小目标检测算法研究综述[J]. 计算机工程与应用, 2022, 58(15): 1-17.
ZHANG Y, ZHANG M L, LYU X L, et al. Review of research on small target detection based on deep learning[J]. Computer Engineering and Applications, 2022, 58(15): 1-17.
[4] 张静, 农昌瑞, 杨智勇. 基于卷积神经网络的目标检测算法综述[J]. 兵器装备工程学报, 2022, 43(6): 37-47.
ZHANG J, NONG C R, YANG Z Y. Review of object detection algorithms based on convolutional neural network[J]. Journal of Ordnance Equipment Engineering, 2022, 43(6): 37-47.
[5] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[6] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2017: 1137-1149.
[7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision Amsterdam, October 11-14, 2016: 21-37.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[9] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 6517-6525.
[10] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767,2018.
[11] BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.
10934,2020.
[12] 宋谱怡, 陈红, 苟浩波. 改进YOLOv5s的无人机目标检测算法[J]. 计算机工程与应用, 2023, 59(1): 108-116.
SONG P Y, CHEN H, GOU H B. Improving UAV object detection algorithm for YOLOv5s[J]. Computer Engineering and Applications, 2023, 59(1): 108-116.
[13] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[14] 贾天豪, 彭力, 戴菲菲. 引入残差学习与多尺度特征增强的目标检测器[J]. 计算机科学与探索, 2023, 17(5): 1102-1111.
JIA T H, PENG L, DAI F F. Object detector with residual learning and multi-scale feature enhancement[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1102-1111.
[15] 邓姗姗, 黄慧, 马燕. 基于改进Faster R-CNN的小目标检测算法[J]. 计算机工程与科学, 2023, 45(5): 869-877.
DENG S S, HUANG H, MA Y. ?A small object detection algorithm?based on improved Faster R-CNN[J]. Computer Enginee-
ring & Science, 2023, 45(5): 869-877.
[16] 李晨, 张辉, 张邹铨, 等. 融合多尺度特征与全局上下文信息的X光违禁物品检测[J]. 中国图象图形学报, 2022, 27(10): 3043-3057.
LI C, ZHANG H, ZHANG Z Q, et al. 2022. Integrated multi-scale features and global context in X-ray detection for prohibited items[J]. Journal of Image and Graphics, 2022, 27(10): 3043-3057.
[17] NIE J, PANG Y, ZHAO S, et al. Efficient selective context network for accurate object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(9): 3456-3468.
[18] 徐坚, 谢正光, 李洪均. 特征平衡的无人机航拍图像目标检测算法[J]. 计算机工程与应用, 2023, 59(6): 196-203.
XU J, XIE Z G, LI H J. Feature-balanced UAV aerial image target detection algorithm[J]. Computer Engineering and Applications, 2023, 59(6): 196-203.
[19] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 936-944.
[20] ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586.
[21] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[22] ZHU P, WEN L, DU D, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(11): 7380-7399.
[23] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[24] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[25] RUKHOVICH D. Iterdet: iterative scheme for object detection in crowded environments[C]//Joint IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition, Padua, January 21-22, 2021: 344-354.
[26] YANG T, ZHANG Z Y, JUN Z, et al. Low-altitude small-sized object detection using lightweight feature-enhanced convolutional neural network[J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 841-853.
[27] SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//European Conference on Machine Learning and Knowledge Discovery in Databases, 2023: 443-459. |