[1] SALEHIA I, ROTITHOR G, SALTUS R, et al. Constrained image-based visual servoing using barrier functions[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2021: 14254-14260.
[2] 徐德. 单目视觉伺服研究综述[J]. 自动化学报, 2018, 44(10): 1729-1746.
XU D. A tutorial for monocular visual servoing[J]. Acta Automatica Sinica, 2018, 44(10): 1729-1746.
[3] LOWE D G. Distinctive image fratures from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[4] TOLA E, LEPETIT V, FUA P. Daisy: an efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 815-830.
[5] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
[6] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of the 2011 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2011: 6-13.
[7] COLLEWET C, MARCHAND E. Photometric visual servoing[J]. IEEE Transactions on Robotics, 2011, 27(4): 828-834.
[8] MARCHAND E. Subspace-based direct visual servoing[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 2699-2706.
[9] ZHONG X G, ZHONG X Y, PENG X F. Robots visual servo control with features constraint employing Kalman-neural-network filtering scheme[J]. Neurocomputing, 2015, 151: 268-277.
[10] 辛菁, 姚雨蒙, 程晗, 等. 基于卷积神经网络的机器人对未知物体视觉定位控制策略[J]. 信息与控制, 2018, 47(3):355-362.
XIN J, YAO Y M, CHENG H, et al. Vision-based robot positioning control strategy for unknown objects using convolutional neural network[J]. Information and Control, 2018, 47(3): 355-362.
[11] 宋仕杰. 基于深度卷积神经网络和进化策略算法的机器人端对端伺服控制[D]. 武汉: 华中科技大学, 2019.
SONG S J. End-to-end servo control of robot with deep convolution neural network and evolution strategy[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[12] SAXENA A, PANDYA H, KUMAR G, et al. Exploring convolutional networks for end-to-end visual servoing[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2017: 3817-3823.
[13] FISCHER P, DOSOVITSKIY A, ILG E, ET AL. FlowNet: learning optical flow with convolutional networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 2758-2766.
[14] BATEUX Q, MARCHAND E, LEITNER J, et al. Training deep neural networks for visual servoing[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2018: 3307-3314.
[15] GAO J, PROCTOR A, BRADLEY C. Adaptive neural network visual servo control for dynamic positioning of underwater vehicles[J]. Neurocomputing, 2015, 167: 604-613.
[16] NEUBERGER B, PATTEN T, PARK K, et al. Self-initialized visual servoing for accurate end-effector positioning[C]//Proceedings of the IEEE 6th International Conference on Control, Automation and Robotics. Piscataway: IEEE, 2020: 676-682.
[17] PANDYA H, KRISHNA K M, JAWAHAR C V. Discriminative learning based visual servoing across object instances[C]//Proceedings of the 2016 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2016: 3447-3454.
[18] LIU Y, ZHOU L, ZONG H, et al. Regression-based three-dimensional pose estimation for texture-less objects[J]. IEEE Transactions on Multimedia, 2019, 21(11): 2776-2789.
[19] RAUCH C, IVAN V, HOSPEDALES T, et al. Learning-driven coarse-to-fine articulated robot tracking[C]//Proceedings of the 2019 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2019: 6604-6610.
[20] GRIFFIN B A, FLORENCE V, CORSO J J. Video object segmentation-based visual servo control and object depth estimation on a mobile robot[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 1636-1646.
[21] YU C J, CAI Z G, PHAM H, et al. Siamese convolutional neural network for sub-millimeter-accurate camera pose estimation and visual servoing[C]//Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2019: 935-941.
[22] CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005: 539-546.
[23] HAN K, WANG Y, TIAN Q, ET AL. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[24] PARK J, WOO S, LEE J Y, et al. A simple and light-weight attention module for convolutional neural networks[J]. International Journal of Computer Vision, 2020, 128(4): 783-798.
[25] QUIGLEY M, CONLEY K, GERKEY B, et al. ROS: an open source robot operating system[C]//Proceedings of the ICRA Workshop on Open Source Software. Piscataway: IEEE, 2009: 3-32. |