[1] 高晶. 财务报表欺诈与舞弊的手段、危害及治理研究[J]. 商业会计, 2019(24): 85-87.
GAO J. Financial statement fraud and fraud means, harm and governance research[J]. Commercial Accounting, 2019(24): 85-87.
[2] 张秋三, 张磊, 张宁, 等. 基于数据挖掘的上市公司财务舞弊识别研究[J]. 科技和产业, 2014, 14(11): 77-80.
ZHANG Q S, ZHANG L, ZHANG N, et al. Research on the financial fraud identification of the listed companies based on data mining techniques[J]. Science Technology and Industry, 2014, 14(11): 77-80.
[3] 许文杰. 上市公司财务舞弊行为识别研究[D]. 杭州: 浙江大学, 2022.
XU W J. Research on identification of financial fraud of listed companies[D]. Hangzhou: Zhejiang University, 2022.
[4] 杨贵军, 周亚梦, 孙玲莉, 等. 基于Benford律的Logistic模型及其在财务舞弊识别中的应用[J]. 统计与信息论坛, 2019, 34(8): 50-56.
YANG G J, ZHOU Y M, SUN L L, et al. Logistic model based on Benford’s law and its application in fraud detection[J]. Journal of Statistics and Information, 2019, 34(8): 50-56.
[5] EL-BANNANY M, DEHGHAN A H, KHEDR A M. Prediction of financial statement fraud using machine learning techniques in UAE[C]//Proceedings of the 2021 18th International Conference on Systems, Signals & Devices, 2021: 649-654.
[6] MOHAMED A H A, SUBRAMANIAN S. Fraud classification in financial statements using machine learning techniques[C]//Proceedings of the 2023 International Conference on IT Innovation and Knowledge Discovery, 2023: 1-4.
[7] PATEL H, PARIKH S, PATEL A, et al. An application of ensemble random forest classifier for detecting financial statement manipulation of Indian listed companies[M]//Recent developments in machine learning and data analytics. Singapore: Springer, 2019: 349-360.
[8] PURDA L, SKILLICORN D. Accounting variables, deception, and a bag of words: assessing the tools of fraud detection[J]. Contemporary Accounting Research, 2015, 32(3): 1193-1223.
[9] DONG W, LIAO S, LIANG L. Financial statement fraud detection using text mining: a systemic functional linguistics theory perspective[C]//Proceedings of the 20th Pacific Asia Conference on Information Systems, 2016: 188.
[10] RAVISANKAR P, RAVI V, RAO G R, et al. Detection of financial statement fraud and feature selection using data mining techniques[J]. Decision Support Systems, 2011, 50(2): 491-500.
[11] LIN C C, CHIU A A, HUANG S Y, et al. Detecting the financial statement fraud: the analysis of the differences between data mining techniques and experts’ judgments[J]. Knowledge-Based Systems, 2015, 89: 459-470.
[12] HAJEK P, HENRIQUES R. Mining corporate annual reports for intelligent detection of financial statement fraud—a comparative study of machine learning methods[J]. Knowledge-Based Systems, 2017, 128: 139-152.
[13] CRAJA P, KIM A, LESSMANN S. Deep learning application for fraud detection in financial statements: IRTG 1792 [R]. Humboldt University of Berlin, 2020.
[14] WU X G, DU S Y. An analysis on financial statement fraud detection for Chinese listed companies using deep learning[J]. IEEE Access, 2022, 10: 22516-22532.
[15] 刘壮, 刘畅, LIN W, 等. 用于金融文本挖掘的多任务学习预训练金融语言模型[J]. 计算机研究与发展, 2021, 58(8): 1761-1772.
LIU Z, LIU C, LIN W, et al. Pretraining financial language model with multi-task learning for financial text mining[J]. Journal of Computer Research and Development, 2021, 58(8): 1761-1772.
[16] QADDOURA R, BILTAWI M M. Improving fraud detection in an imbalanced class distribution using different over-sampling techniques[C]//Proceedings of the 2022 International Engineering Conference on Electrical, Energy, and Artificial Intelligence, 2022: 1-5.
[17] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[18] WANG R, FU B, FU G, et al. Deep & cross network for ad click predictions[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017: 12.
[19] FU K, CHENG D, TU Y, et al. Credit card fraud detection using convolutional neural networks[C]//Proceedings of the 23rd International Conference on Neural Information Processing. Cham: Springer, 2016: 483-490.
[20] 李淑红, 贾琳. 基于图注意力网络和简单循环单元的化合物-蛋白质交互预测[J]. 模式识别与人工智能, 2021, 34(6): 522-531.
LI S H, JIA L. Compound-protein interaction prediction based on graph attention network and simple recurrent unit[J]. Pattern Recognition and Artificial Intelligence, 2021, 34(6): 522-531.
[21] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 2980-2988. |