计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (3): 62-83.DOI: 10.3778/j.issn.1002-8331.2404-0438

• 热点与综述 • 上一篇    下一篇

多元关系知识表示学习方法研究综述

杭婷婷,丁海超,郭亚,冯钧   

  1. 1.安徽工业大学 计算机科学与技术学院,安徽 马鞍山 243032
    2.河海大学 水利部水利大数据重点实验室,南京 211100
    3.河海大学 计算机与软件学院,南京 211100
  • 出版日期:2025-02-01 发布日期:2025-01-24

Review on Knowledge Representation Learning Methods for N-Ary Relation

HANG Tingting, DING Haichao, GUO Ya, FENG Jun   

  1. 1.College of Computer Science and Technology, Anhui University of Technology, Ma’anshan, Anhui 243032, China
    2.Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China
    3.College of Computer and Software, Hohai University, Nanjing 211100, China
  • Online:2025-02-01 Published:2025-01-24

摘要: 知识表示学习旨在将知识库中的实体和关系转化为机器能够理解和处理的形式,从而提升模型的分析与推理能力。针对传统二元关系知识表示学习的局限,如忽略高阶关系、缺乏扩展性和有限的表达力,多元关系知识表示学习方法应运而生。全面综述了多元关系知识表示学习方法。梳理和分析了知识表示学习相关综述工作;阐释了知识表示学习和链接预测的基本概念,并根据超图、角色、超关系这三种表示形式,定义了多元关系知识表示学习任务;从基于平移距离、张量分解、卷积神经网络、图神经网络和其他类型五类方法,展示了该领域的研究进展;介绍了常用的数据集与评价指标,并通过链接预测任务评估了不同模型的性能;探讨了目前方法存在的问题和挑战,并对未来的研究方向提出了展望。

关键词: 知识表示学习, 二元关系, 多元关系, 链接预测

Abstract: Knowledge representation learning aims to transform entities and relationships in knowledge base into a form that machines can understand and process, thereby enhancing the  analytical and reasoning capabilities of the model. Addressing the limitations of traditional binary relational knowledge representation learning, such as ignoring higher-order relations, lack of scalability, and limited expressiveness, n-ary relational knowledge representation learning methods have emerged. This paper provides a comprehensive review of n-ary relational knowledge representation learning methods. It organizes and analyzes related survey works on knowledge representation learning. It explains the basic concepts of knowledge representation learning and link prediction, and defines the task of n-ary relational knowledge representation learning based on three forms of representation: hypergraphs, roles, and hyper-relations. It demonstrates the research progress in this field through five categories of methods: translation distance-based, tensor decomposition-based, convolutional neural networks, graph neural networks, and other types. It introduces commonly used datasets and evaluation metrics and evaluates the performance of different models through link prediction tasks. It discusses the current problems and challenges of the methods and proposes prospects for future research directions.

Key words: knowledge representation learning, binary relation, n-ary relation, link prediction