[1] 罗晖, 贾晨, 李健. 基于改进YOLOv4的公路路面病害检测算法[J]. 激光与光电子学进展, 2021, 58(14): 328-336.
LUO H, JIA C, LI J. Road surface disease detection algorithm based on improved YOLOv4[J]. Laser & Optoelectronics Progress, 2021, 58(14): 328-336.
[2] 曹锦纲, 杨国田, 杨锡运. 基于注意力机制的深度学习路面裂缝检测[J]. 计算机辅助设计与图形学学报, 2020, 32(8): 1324-1333.
CAO J G, YANG G T, YANG X Y, Pavement crack detection with deep learning based on attention mechanism[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(8): 1324-1333.
[3] 李松, 史涛, 井方科. 改进YOLOv8的道路损伤检测算法[J]. 计算机工程与应用, 2023, 59(23): 165-174.
LI S, SHI T, JING F K. Improved road damage detection algorithm of YOLOv8[J]. Computer Engineering and Applications, 2023, 59(23): 165-174.
[4] ARYA D, MAEDA H, GHOSH S K, et al. Global road damage detection: state-of-the-art solutions[C]//Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), 2020.
[5] ZHANG X, XIA X, LI N, et al. Exploring the tricks for road damage detection with a one-stage detector[C]//Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), 2020.
[6] NADDAF-SH S, NADDAF-SH M M, KASHANI A R, et al. An efficient and scalable deep learning approach for road damage detection[C]//Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), 2020.
[7] MANDAL V, MUSSAH A R, ADU-GYAMFI Y. Deep learning frameworks for pavement distress classification: a comparative analysis[C]//Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), 2020.
[8] 张志华, 温亚楠, 慕号伟, 等. 结合双注意力机制的道路裂缝检测[J]. 中国图象图形学报, 2022, 27(7): 2240-2250.
ZHANG Z H, WEN Y N, MU H W, et al. Dual attention mechanism based pavement crack detection[J]. Journal of Image and Graphics , 2022, 27(7): 2240-2250.
[9] GOU C, PENG B, LI T R, et al. Pavement crack detection based on the improved Faster-RCNN[C]//Proceedings of IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), 2019: 962-967.
[10] 张艳君, 沈平, 郭安辉, 等. 融合CBAM-YOLOv7模型的路面缺陷智能检测方法研究[J]. 重庆理工大学学报 (自然科学), 2023, 37(11): 213-220.
ZHANG Y J, SHEN P, GUO A H, et al. Research on intelligent detection method of pavement defects incorporating CBAM-YOLOv7 model[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(11): 213-220.
[11] GUO G, ZHANG Z. Road damage detection algorithm for improved YOLOv5[J]. Scientific Reports, 2022, 12(1): 15523.
[12] 倪昌双, 李林, 罗文婷, 等. 改进YOLOv7的沥青路面病害检测[J]. 计算机工程与应用, 2023, 59(13): 305-316.
NI C S, LI L, LUO W T, et al. Disease detection of asphalt pavement based on improved YOLOv7[J]. Computer Engineering and Applications, 2023, 59(13): 305-316.
[13] WANG S, CHEN X, DONG Q. Detection of asphalt pavement cracks based on vision Transformer improved YOLO V5[J]. Journal of Transportation Engineering, Part B: Pavements, 2023, 149(2): 04023004.
[14] ZHENG Q, SAPONARA S, TIAN X, et al. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT[J]. Cognitive Neurodynamics, 2023, 18: 659-671.
[15] CAO Y, XU J, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019.
[16] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[17] ZHANG C B, JIANG P T, HOU Q, et al. Delving deep into label smoothing[J]. IEEE Transactions on Image Processing, 2021, 30: 5984-5996.
[18] ARYA D, MAEDA H, GHOSH S K, et al. RDD2020: an annotated image dataset for automatic road damage detection using deep learning[J]. Data in Brief, 2021, 36: 107133.
[19] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[20] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[21] OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023), 2023: 1-5.
[22] KORTMANN F, TALITS K, FASSMEYER P, et al. Detecting various road damage types in global countries utilizing faster R-CNN[C]//Proceedings of the 2020 IEEE International Conference on Big Data(Big Data), 2020.
[23] PHAM V, PHAM C, DANG T. Road damage detection and classification with Detectron2 and Faster R-CNN[C]//Proceedings of the 2020 IEEE International Conference on Big Data(Big Data), 2020.
[24] VISHWAKARMA R, VENNELAKANTI R. CNN model & tuning for global road damage detection[C]//Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), 2020.
[25] HASCOET T, ZHANG Y, PERSCH A, et al. FasterRCNN monitoring of road damages: competition and deployment[C]//Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), 2020.
[26] LIU Y, ZHANG X, ZHANG B, et al. Deep network for road damage detection[C]//Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), 2020.
[27] JEONG D. Road damage detection using YOLO with smartphone images[C]//Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), 2020.
[28] ARYA D, MAEDA H, GHOSH S K, et al. Rdd2022: a multi-national image dataset for automatic road damage detection[J]. arXiv:2209.08538, 2022. |