[1] 雷桐, 魏晓阳. 数字媒介环境下陕西寺观壁画的数字化保护与传播研究[J]. 新媒体研究, 2022, 8(22): 25-27.
LEI T, WEI X Y. Research on digital protection and dissemination of temple murals in Shaanxi under digital media environment[J]. New Media Research, 2022, 8(22): 25-27.
[2] 陈永, 艾亚鹏, 郭红光. 改进曲率驱动模型的敦煌壁画修复算法[J]. 计算机辅助设计与图形学学报, 2020, 32(5): 787-796.
CHEN Y, AI Y P, GUO H G. Inpainting algorithm for Dunhuang mural based on improved curvature-driven diffusion model[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(5): 787-796.
[3] 胡颖. 壁画类文物保护技术研究[J]. 东方收藏, 2022(5): 104-106.
HU Y. Study on protection technology of mural cultural relics[J]. Oriental Collection, 2022(5): 104-106.
[4] 梁涛, 夏国芳, 胡春梅. 壁画病害边缘自动提取方法研究[J]. 石窟与土遗址保护研究, 2022, 1(1): 61-69.
LIANG T, XIA G F, HU C M. Research on automatic edge extraction of mural diseases[J]. Research on the Conservation of Cave Temples and Earthen Sites, 2022, 1(1): 61-69.
[5] 张子迎, 税午阳, 周明全, 等. 数字壁画病害提取与修复算法研究[J]. 计算机应用研究, 2021, 38(8): 2495-2498.
ZHANG Z Y, SHUI W Y, ZHOU M Q, et al. Research on disease extraction and inpainting algorithm of digital grotto murals[J]. Application Research of Computers, 2021, 38(8): 2495-2498.
[6] DENG X C, YU Y. Automatic calibration of crack and flaking diseases in ancient temple murals[J]. Heritage Science, 2022, 10(1): 1-17.
[7] 张叶娥, 吴利刚. 基于深度学习的石窟壁画破损检测[J]. 云冈研究, 2022, 2(1): 85-90.
ZHANG Y E, WU L G. The detection of cave mural damage based on deep learning[J]. Yungang Research, 2022, 2(1): 85-90.
[8] 吴利刚, 张梁. 基于轻量化神经网络的石窟壁画破损检测方法[J]. 信息与控制, 2024, 53(1): 108-119.
WU L G, ZHANG L. Damage detection method for grotto murals based on lightweight neural network[J]. Information and Control, 2024, 53(1): 108-119.
[9] HUANG R, FENG W, FAN M Y, et al. Learning multi-path CNN for mural deterioration detection[J]. Journal of Ambient Intelligence and Humanized Computing, 2017, 11: 3101-3180.
[10] 罗启明, 吴昊, 夏信, 等. 基于Dual Dense U-Net的云南壁画破损区域预测[J]. 图学学报, 2023, 44(2): 304-312.
LUO Q M, WU H, XIA X, et al. Damaged areas in Yunnan murals prediction using Dual Dense U-Net[J]. Journal of Graphics, 2023, 44(2): 304-312.
[11] 吕书强, 王诗涵, 侯妙乐, 等. 基于改进U-Net的壁画颜料层脱落病害区域提取[J]. 地理信息世界, 2022, 29(1): 69-74.
LYU S Q, WANG S H, HOU M L, et al. Extraction of mural paint loss diseases based on lmproved U-Net[J]. Geomatics World, 2022, 29(1): 69-74.
[12] BODNAR J L, MOUHOUBI K, VALLET J M. Examples of SVD decomposition contributions to the non-destructive testing of cultural heritage mural paintings using stimulated infrared thermography[J]. The European Physical Journal Applied Physics, 2022, 97: 1-10.
[13] LUO P, ZHANG R, REN J, et al. Switchable normalization for learning-to-normalize deep representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 712-728.
[14] CHEN S, TAN X, WANG B, et al. Reverse attention for salient object detection[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 236-252.
[15] ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 39(6): 1856-1867.
[16] CHEN Z, XU Q, CONG R, et al. Global context-aware progressive aggregation network for salient object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 10599-10606.
[17] HE K, GKIOXARI G, PIOTR D, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[18] SAINING X, ZHUOWEN T. Holistically-nested edge detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1395-1403.
[19] LIU Y, CHENG M M, ZHANG X, et al. DNA: deeply-supervised nonlinear aggregation for salient object detection[J]. IEEE Transactions on Cybernetics, 2022, 52(7): 6131-6142.
[20] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 3-19.
[21] LIU N, HAN J, YANG M H. PiCANet: pixel-wise contextual attention learning for accurate saliency detection[J]. IEEE Transactions on Image Processing, 2020, 29: 6438-6451.
[22] QIN X, ZHANG Z, HUANG C, et al. U2-Net: going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 2020, 106: 107404.
[23] LIU J J, HOU Q, CHENG M M, et al. A simple pooling-based design for real-time salient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3912-3921. |