[1] VASWANI A, SHAZER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[2] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(1): 1-22.
[3] XUAN G, ZHANG W, CHAI P. EM algorithms of Gaussian mixture model and hidden Markov model[C]//Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), 2001: 145-148.
[4] AHMAD Z, KHAN A S, SHIANG C W, et al. Network intrusion detection system: a systematic study of machine learning and deep learning approaches[J]. Transactions on Emerging Telecommunications Technologies, 2021, 32(1): e4150.
[5] IMRANA Y, XIANG Y, ALI L, et al. A bidirectional LSTM deep learning approach for intrusion detection[J]. Expert Systems with Applications, 2021, 185: 115524.
[6] THAKKAR A, LOHIYA R. A review of the advancement in intrusion detection datasets[J]. Procedia Computer Science, 2020, 167: 636-645.
[7] 陈虹, 李泓绪, 金海波. 多尺度卷积与双注意力机制融合的入侵检测方法[J]. 辽宁工程技术大学学报 (自然科学版), 2024, 43(1): 93-100.
CHEN H, LI H X, JIN H B. Intervention detection method of multi-dimensional mentality and dual attention fusion mechanism[J]. Journal of Liaoning Technical University (Natural Science Edition), 2024, 43(1): 93-100.
[8] CUI H, LIANG L, WANG J. Network traffic identification based on improved EM algorithm[J]. IEEE Access, 2024, 12: 26773-26786.
[9] PENG D, WU F, CHEN G. Pay as how well you do: aquality based incentive mechanism for crowdsensing[C]//Proceedings of the16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2015: 177-186.
[10] WU J. Introduction to convolutional neural networks[D]. National Key Lab for Novel Software Technology. Nanjing University, 2017.
[11] ZHU Z, DAI W, HU Y, et al. Speech emotion recognition model based on Bi-GRU and focal loss[J]. Pattern Recognition Letters, 2020, 140: 358-365.
[12] 祁宣豪, 智敏. 图像处理中注意力机制综述[J]. 计算机 科学与探索, 2024, 18(2): 345-362.
QI X H, ZHI M. Review of attention mechanisms in image processing[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 345-362.
[13] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv: 1301.3781, 2013.
[14] TSAI Y H H, BAI S, LIANG P P, et al. Multimodal transformer for unaligned multimodal language sequences[J]. arXiv:1906.00295, 2019.
[15] Canadian Institute for Cybersecurity. CSE-CIC-IDS2018 dataset[EB/OL]. [2023-03-31]. https://www.unb.ca/cic/datasets/ids-2018.html.
[16] TAVALLAEE M, BAGHERI E, LU W, et al. A detailed analysis of the KDD CUP 99 data set[C]//Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, 2009: 1-6.
[17] MOUSTAFA N, SLAY J. UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[C]//Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), 2015: 1-6.
[18] GóMEZ-HERNáNDEZ J A, áLVAREZ-GONZáLEZ L, GARCíA-TEO DORO P. R-2-L: towards a more reliable R2L attack detector[J]. Neurocomputing, 2013, 101: 32-44.
[19] SRINIVASAN S, ZHU X, SARKAR R, et al. MaliciousURL: a dataset of malicious URLs for phishing and malware detection[C]//Proceedings of the 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP), 2019: 1-6.
[20] SHIRAVI H, SHIRAVI A, TAVALLAEE M, et al. Toward developing a systematic approach to generate benchmark datasets for intrusion detection[J]. Computers & Security, 2012, 31(3): 357-374.
[21] KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. arXiv:1412.6980, 2014.
[22] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.
[23] ROSENBLATT F. The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6): 386.
[24] GIMéNEZ C T, VILLEGAS A P, MARA?óN G á. HTTP data set CSIC 2010[R]. Information Security Institute of CSIC (Spanish Research National Council), 2010.
[25] WANG C, CHO K, GU J. Neural machine translation with byte-level subwords[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 9154-9160.
[26] 梅御东, 陈旭, 孙毓忠, 等. 一种基于日志信息和CNN-text的软件系统异常检测方法[J]. 计算机学报, 2020, 43(2): 366-380.
MEI Y D, CHEN X, SUN Y Z, et al. A method for software system anomaly detection based on log information and CNN-Text[J]. Chinese Journal of Computers, 2020, 43(2): 366-380.
[27] 陈思然, 吴敬征, 凌祥, 等. 面向漏洞检测模型的强化学习式对抗攻击方法[J]. 软件学报, 2024, 35(8): 3647-3667.
CHEN S R, WU J Z, LING X, et al. Reinforcement learning-based adversarial attack method for vulnerability detection models[J]. Journal of Software, 2024, 35(8): 3647-3667.
[28] 陈虹, 陈建虎, 肖成龙, 等. 深度学习模型下多分类器的入侵检测方法[J]. 计算机科学与探索, 2019, 13(7): 1123-1133.
CHEN H, CHEN J H, XIAO C L, et al. Intrusion detection method of multiple classifiers under deep learning model[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(7): 1123-1133.
[29] 陈雪, 彭艳兵, 陈前, 等. 基于隐变量模型的恶意登录行为在线检测方法[J]. 信息安全研究, 2023, 9(1): 22-28.
CHEN X, PENG Y B, CHEN Q, et al. An online detection method for malicious login behavior based on latent variable models[J]. Information Security Research, 2023, 9(1): 22-28. |