计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (3): 306-314.DOI: 10.3778/j.issn.1002-8331.2312-0017

• 网络、通信与安全 • 上一篇    下一篇

融合改进堆叠编码器和多层BiLSTM的入侵检测模型

陈虹,姜朝议,金海波,武聪,卢健波   

  1. 1.辽宁工程技术大学 软件学院,辽宁 葫芦岛 125105
    2.辽宁工程技术大学 科学技术研究院,辽宁 阜新 123000
  • 出版日期:2025-02-01 发布日期:2025-01-24

Fusion of Improved Stacked Encoder and Multi-Layer BiLSTM for Intrusion Detection Model

CHEN Hong, JIANG Chaoyi, JIN Haibo, WU Cong, LU Jianbo   

  1. 1.College of Software, Liaoning Technical University, Huludao, Liaoning 125105, China
    2.Institute of Science and Technology, Liaoning Technical University, Fuxin, Liaoning 123000, China
  • Online:2025-02-01 Published:2025-01-24

摘要: 针对基于机器学习入侵检测模型需要大量特征工程,且对不平衡数据处理欠佳,导致检测率低、误报率高等问题。构建了一种SE-MBL的入侵检测模型。采用自适应合成采样(ADASYN)方法对少数类样本进行样本扩展,解决数据不平衡问题,形成相对对称的数据集。采用改进的堆叠自编码器进行数据降维,消除特征冗余,并引入Dropout机制来增强信息融合,提升模型的泛化能力。提出一种融合一维CNN和多层BiLSTM的模块,分别提取空间特征和时间特征,以提高模型的分类性能。在NSL-KDD和CICIDS2017数据集上的实验结果表明,该模型可以实现较高的正确率和召回率,优于传统机器学习和深度学习方法。

关键词: 网络安全, 入侵检测, 数据不平衡, 数据降维, 多层BiLSTM

Abstract: Aiming at the problems of machine learning-based intrusion detection model that requires a large amount of feature engineering and poorly handles unbalanced data, resulting in low detection rate and high false alarm rate. An intrusion detection model for SE-MBL is constructed. Firstly, the adaptive synthetic sampling (ADASYN) method is used to expand the samples of a few classes of samples to solve the data imbalance problem and form a relatively symmetric dataset. Secondly, an improved stacked self-encoder is used for data dimensionality reduction to eliminate feature redundancy, and a Dropout mechanism is introduced to enhance information fusion and improve the generalization ability of the model. Finally, a module that fuses one-dimensional CNN and multilayer BiLSTM is proposed to extract spatial and temporal features respectively to improve the classification performance of the model. Experimental results on NSL-KDD and CICIDS2017 datasets show that the model can achieve high correctness and recall, outperforming traditional machine learning and deep learning methods.

Key words: cybersecurity, intrusion detection, data imbalance, data dimensionality reduction, multilayer BiLSTM