[1] BENITEZ-GARCIA G, PRUDENTE-TIXTECO L, CASTRO-MADRID L C, et al. Improving real-time hand gesture recognition with semantic segmentation[J]. Sensors, 2021, 21(2): 356.
[2] 鹿鑫, 杜煜, 陈泽宇, 等. 基于改进BiSeNet的语义分割算法[J]. 传感器与微系统, 2023, 42(7): 136-139.
LU X, DU Y, CHEN Z Y, et al. Semantic segmentation algorithm based on improved BiSeNet[J]. Transducer and Microsystem Technologies, 2023, 42(7): 136-139.
[3] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
[4] SAHA M, CHAKRABORTY C. Her2Net: a deep framework for semantic segmentation and classification of cell membranes and nuclei in breast cancer evaluation[J]. IEEE Transactions on Image Processing, 2018, 27(5): 2189-2200.
[5] 苏健民, 杨岚心, 景维鹏. 基于U-Net的高分辨率遥感图像语义分割方法[J]. 计算机工程与应用, 2019, 55(7): 207-213.
SU J M, YANG L X, JING W P. U-Net based semantic segmentation method for high resolution remote sensing image[J]. Computer Engineering and Applications, 2019, 55(7): 207-213.
[6] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20: 273-297.
[7] HO T K. Random decision forests[C]//Proceedings of the 3rd International Conference on Document Analysis and Recognition, 1995: 278-282.
[8] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[9] IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5 MB model size[J]. arXiv:1602.07360, 2016.
[10] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556,2014.
[11] AL-QIZWINI M, BARJASTEH I, AL-QASSAB H, et al. Deep learning algorithm for autonomous driving using googlenet[C]//Proceedings of the 2017 IEEE Intelligent Vehicles Symposium , 2017: 89-96.
[12] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLAB: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[13] LIN G, MILAN A, SHEN C, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1925-1934.
[14] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision, 2018: 801-818.
[15] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2881-2890.
[16] LI H C, XIONG P F, FAN H Q, et al. DFANet: deep feature aggregation for real-time semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9522-9531.
[17] YU C, WANG J, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European Conference on Computer Vision, 2018: 325-341.
[18] PAN H, HONG Y, SUN W, et al. Deep dual-resolution networks for real-time and accurate semantic segmentation of traffic scenes[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 24(3): 3448-3460.
[19] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[20] LIU J B, HE J J, ZHANG J W, et al. EfficientFCN: holistically-guided decoding for semantic segmentation[C]//Proceedings of the European Conference on Computer Vision, 2020: 1-17.
[21] TAKAHASHI N, MITSUFUJI Y. Densely connected multi-dilated convolutional networks for dense prediction tasks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 993-1002.
[22] MEHTA S, RASTEGARI M, CASPI A, et al. ESPNet: efficient spatial pyramid of dilated convolutions for semantic segmentation[C]//Proceedings of the European Conference on Computer Vision, 2018: 552-568.
[23] ZHANG H, ZU K, LU J, et al. EPSANet: an efficient pyramid squeeze attention block on convolutional neural network[C]//Proceedings of the Asian Conference on Computer Vision, 2022: 1161-1177.
[24] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[25] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[26] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 3213-3223.
[27] BROSTOW G J, FAUQUEUR J, CIPOLLA R. Semantic object classes in video: a high-definition ground truth database[J]. Pattern Recognition Letters, 2009, 30(2): 88-97.
[28] ZHAO H, QI X, SHEN X, et al. ICNet for real-time semantic segmentation on high-resolution images[C]//Proceedings of the European Conference on Computer Vision, 2018: 405-420.
[29] YU C, GAO C, WANG J, et al. BiSeNet v2: bilateral network with guided aggregation for real-time semantic segmentation[J]. International Journal of Computer Vision, 2021, 129: 3051-3068.
[30] FAN M, LAI S, HUANG J, et al. Rethinking BiSeNet for real-time semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 9716-9725.
[31] WANG H, JIANG X, REN H, et al. SwiftNet: real-time video object segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 1296-1305.
[32] KUMAAR S, LYU Y, NEX F, et al. CABiNet: efficient context aggregation network for low-latency semantic segmentation[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation, 2021: 13517-13524.
[33] PASZKE A, CHAURASIA A, KIM S, et al. ENet: a deep neural network architecture for real-time semantic segmentation[J]. arXiv:1606.02147, 2016.
[34] LO S Y, HANG H M, CHAN S W, et al. Efficient dense modules of asymmetric convolution for real-time semantic segmentation[C]//Proceedings of the ACM Multimedia Asia, 2019: 1-6. |