[1] 沙浩, 刘越, 王涌天, 等. 基于二维图像和三维几何约束神经网络的单目室内深度估计方法[J]. 光学学报, 2022, 42(19): 39-49.
SHA H, LIU Y, WANG Y T, et al. Monocular indoor depth estimation method based on neural networks with constraints on two-dimensional images and three-dimensional geometry[J]. Acta Optica Sinica, 2022, 42(19): 39-49.
[2] 胡春生, 闫小鹏, 魏红星, 等. 基于立体视觉的目标检测与轨迹预测研究综述[J]. 计算机工程与应用, 2022, 58(3): 50-65.
HU C S, YAN X P, WEI H X, et al. Survey of target detection and trajectory prediction based on stereo vision[J]. Computer Engineering and Applications, 2022, 58(3): 50-65.
[3] 马建红, 王稀瑶, 陈永霞, 等. 自动驾驶中图像与点云融合方法研究综述[J]. 郑州大学学报(理学版), 2022, 54(6): 24-33.
MA J H, WANG X Y, CHEN Y X, et al. A review of research on image and point cloud fusion methods in automatic driving[J]. Journal of Zhengzhou University (Science Edition), 2022, 54(6): 24-33.
[4] 张王, 高晓蓉, 李金龙, 等. 基于二步相移法的钢轨三维面形复原[J]. 激光与光电子学进展, 2022, 59(10): 1015003.
ZHANG W, GAO X R, LI J L, et al. Three-dimensional surface reconstruction of rail based on two-step phase-shift method[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1015003.
[5] 丁子轩, 张娟, 李想, 等. 基于注意力引导的轻量级图像超分辨率网络[J]. 激光与光电子学进展, 2023, 60(14): 95-103.
DING Z X, ZHANG J, LI X, et al. Lightweight attention-guided network for image super-resolution[J]. Laser & Optoelectronics Progress, 2023, 60(14): 95-103.
[6] CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 2017: 77-85.
[7] CHARLESR Q, LI Y, HAO S, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//2008 IEEE International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 2017: 5105-5114.
[8] YUAN W T, KHOT T, HELD D, et al. PCN: point completion network[C]//2018 International Conference on 3D Vision (3DV), September 5-8, 2018, Verona, Italy. New York: IEEE, 2018: 728-737.
[9] HUANG Z, YU Y, XU J, et al. PF-Net: point fractal network for 3D point cloud completion[C]//2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 7662-7670.
[10] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2117-2125.
[11] ZHANG J, CHEN X, CAI Z, et al. Unsupervised 3D shape completion through GAN inversion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 1768-1777.
[12] 孙娅楠, 林文斌. 梯度下降法在机器学习中的应用[J]. 苏州科技大学学报 (自然科学版), 2018, 35(2): 26-31.
SUN Y N, LIN W B. Application of gradient descent method in machine learning[J]. Journal of Suzhou University of Science and Technology (Natural Science Edition), 2018, 35(2): 26-31.
[13] WEN X, XIANG P, HAN Z, et al. PMP-Net: point cloud completion by learning multi-step point moving paths[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 7443-7452.
[14] WEN X, XIANG P, HAN Z, et al. PMP-Net++: point cloud completion by transformer-enhanced multi-step point moving paths[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(1): 852-867.
[15] TANG J, GONG Z, YI R, et al. LAKe-Net: topology-aware point cloud completion by localizing aligned keypoints[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 1726-1735.
[16] TCHAPMI L I, KOSARAJU V, REZATOFIFIGHI H, et al. TopNet: structural point cloud decoder[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 383-392.
[17] YU L, LI X, FU C W, et al. PU-Net: point cloud upsampling network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 2790-2799.
[18] GROUEIX T, FISHER M, KIM V G, et al. A papier-maché approach to learning 3D surface generation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 216-224.
[19] WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2018, 38(5): 1-12.
[20] HANG W, MIAO Y, FU R C. Point cloud completion using multiscale feature fusion and cross-regional attention[J]. Image and Vision Computing, 2021, 111: 104193.
[21] HUA B S, TRAN M K, YEUNG S K. Pointwise convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 984-993.
[22] CHIBANE J, ALLDIECK T, PONS-MOLL G. Implicit functions in feature space for 3D shape reconstruction and completion[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020: 6970-6981.
[23] XIE H Z, YAO H X, ZHOU S C, et al. GRNet: gridding residual network for dense point cloud completion[C]//Proceedings of the 16th European Conference on Computer Vision. Glasgow, Scotland: Springer, 2020: 365-381.
[24] WANG X, ANG M H, LEE G H. Voxel-based network for shape completion by leveraging edge generation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 13189-13198.
[25] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: NIPS, 2017: 6000-6010.
[26] PAN X R, XIA Z F, SONG S J, et al. 3D object detection with pointformer[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 2021: 7463-7472.
[27] ZHAO H S, JIANG L, JIA J Y, et al. Point transformer[EB/OL]. [2021-06-20]. https: //arxiv. org/pdf/2012. 09164. pdf.
[28] YU X M, RAO Y M, WANG Z Y, et al. Pointr: diverse point cloud completion with geometry-aware transformers[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 2021: 12478-12487.
[29] LIN J J, RICKERT M, PERZYLO A, et al. Pctmanet: point cloud transformer with morphing atlas-based point generation network for dense point cloud completion[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Prague, Czech Republic, 2021: 5657-5663.
[30] 麻卫峰, 王金亮, 张建鹏, 等. 一种改进法向量估算的点云特征提取[J]. 测绘科学, 2021, 46(11): 84-90.
MA W F, WANG L J, ZHANG J P, et al. Feature extraction from point cloud based on improved normal vector[J]. Science of Surveying and Mapping, 2021, 46(11): 84-90.
[31] ACHLIOPTAS P, DIAMANTI O, MITLIAGKAS I, et al. Learning representations and generative models for 3d point clouds[C]//International Conference on Machine Learning, 2018: 40-49.
[32] 曾安, 彭杰威, 刘畅, 等. 基于多尺度几何感知 Transformer 的植物点云补全网络[J]. 农业工程学报, 2022, 38(4): 198-205.
ZENG A, PENG J W, LIU C, et al. Plant point cloud completion network based on multi-scale geometry-aware point Transformer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(4): 198-205.
[33] 刘鹏南, 徐冬冬, 白春梦. 基于尺度不变特征变换的异源图像配准方法[J]. 激光与光电子学进展, 2021, 58(24): 164-173.
LIU P N, XU D D, BAI C M. Scale-invariant feature transform-based heterogeneous image registration method[J]. Laser & Optoelectronics Progress, 2021, 58(24): 164-173.
[34] FAN H, HAO S, GUIBAS L. A point set generation network for 3D object reconstruction from a single image[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[35] CHANG A X, FUNKHOURSER T, GUIBAS L, et al. Shape-
Net: an information-rich 3D model repository[J]. arXiv:1512.03012, 2015.
[36] ZHOU J, WANG H, WEI J, et al. Adaptive moment estimation for polynomial nonlinear equalizer in PAM8-based optical interconnects[J]. Optics Express, 2019, 27(22): 32210-32216.
[37] WU S, LI G, DENG L, et al. L1-norm batch normalization for efficient training of deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 30(7): 2043-2051.
[38] ZENG Z, HUANG T, ZHENG W X. Multistability of recurrent neural networks with time-varying delays and the piecewise linear activation function[J]. IEEE Transactions on Neural Networks, 2010, 21(8): 1371-1377.
[39] ZHAO Y, BIRDAL T, DENG H, et al. 3D point capsule networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1009-1018.
[40] XIANG P, WEN X, LIU Y S, et al. SnowflakeNet: point cloud completion by snowflake point deconvolution with skip-transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 5499-5509. |