[1] MAYERSCH?NBERGER V, CUKIER K. Big data: a revolution that will transform how we live, work, and think[J]. Mathematics & Computer Education, 2014, 47(17): 181-183.
[2] 王智悦, 于清, 王楠, 等. 基于知识图谱的智能问答研究综述[J]. 计算机工程与应用, 2020, 56(23): 1-11.
WANG Z Y, YU Q, WANG N, et al. Survey of intelligent question answering research based on knowledge graph[J]. Computer Engineering and Applications, 2020, 56(23): 1-11.
[3] 杜会芳, 王昊奋, 史英慧, 等. 知识图谱多跳问答推理研究进展、挑战与展望[J]. 大数据, 2021, 7(3): 60-79.
DU H F, WANG H F, SHI Y H, et al. Progress, challenges and research trends of reasoning in multi-hop knowledge graph based question answering[J]. Big Data Research, 2021, 7(3): 60-79.
[4] 梁锋, 羊恩跃, 潘微科, 等. 基于联邦学习的推荐系统综述[J]. 中国科学: 信息科学, 2022, 52(5): 713-741.
LIANG F, YANG E Y, PAN W K, et al. Survey of recommender systems based on federated learning[J]. Scientia Sinica(Informationis), 2022, 52(5): 713-741.
[5] 王萌, 王靖婷, 江胤霖, 等. 人机混合的知识图谱主动搜索[J]. 计算机研究与发展, 2020, 57(12): 2501-2513.
WANG M, WANG J T, JIANG Y L, et al. Hybrid human-machine active search over knowledge graph[J]. Journal of Computer Research and Development, 2020, 57(12): 2501-2513.
[6] LIU X, LI Y C, LI Y, et al. A comprehensive survey on knowledge graph-based question answering[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(10): 1919-1938.
[7] CHOWDHURY G G. Natural language processing[J]. Annual Review of Information Science and Technology, 2003, 37(1): 51-89.
[8] YANG Y, CHANG M W. S-MART: novel tree-based structured learning algorithms applied to tweet entity linking[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 504-513.
[9] CHEN Y, WU L F, ZAKI M J. Bidirectional attentive memory networks for question answering over knowledge bases[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 2913-2923.
[10] BERANT J, CHOU A, FROSTIG R, et al. Semantic parsing on freebase from question-answer pairs[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2013: 1533-1544.
[11] BERANT J, LIANG P. Semantic parsing via paraphrasing[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2014: 1415-1425.
[12] WONG Y W, MOONEY R. Learning synchronous grammars for semantic parsing with lambda calculus[C]//Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics. Stroudsburg: ACL, 2007: 960-967.
[13] BERANT J, LIANG P. Imitation learning of agenda-based semantic parsers[J]. Transactions of the Association for Computational Linguistics, 2015, 3: 545-558.
[14] HU S, ZOU L, YU J X, et al. Answering natural language questions by subgraph matching over knowledge graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(5): 824-837.
[15] ABUJABAL A, YAHYA M, RIEDEWALD M, et al. Automated template generation for question answering over knowledge graphs[C]//Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 1191-1200.
[16] SUN Y W, ZHANG L L, CHENG G, et al. SPARQA: skeleton-based semantic parsing for complex questions over knowledge bases[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(5): 8952-8959.
[17] CAI Q Q, YATES A. Large-scale semantic parsing via schema matching and lexicon extension[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2013: 423-433.
[18] YIH W T, CHANG M W, HE X D, et al. Semantic parsing via staged query graph generation: question answering with knowledge base[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 1321-1331.
[19] BAO J, DUAN N, YAN Z, et al. Constraint-based question answering with knowledge graph[C]//Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers. Stroudsburg: ACL, 2016: 2503-2514.
[20] BORDES A, WESTON J, USUNIER N. Open question answering with weakly supervised embedding models[C]//Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin, Heidelberg: Springer, 2014: 165-180.
[20] BORDES A, WESTON J, USUNIER N. Open question answering with weakly supervised embedding models[C]//Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin, Heidelberg: Springer, 2014: 165-180.
[21] BORDES A, CHOPRA S, WESTON J. Question answering with subgraph embeddings[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 615-620.
[22] HUANG X, ZHANG J Y, LI D C, et al. Knowledge graph embedding based question answering[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining. New York: ACM, 2019: 105-113.
[23] BORDES A, USUNIER N, CHOPRA S, et al. Large-scale simple question answering with memory networks[J]. arXiv:1506.02075, 2015.
[24] XU Y, MOU L L, LI G, et al. Classifying relations via long short term memory networks along shortest dependency paths[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 1785-1794.
[25] XU K, REDDY S, FENG Y S, et al. Question answering on freebase via relation extraction and textual evidence[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2016: 2326-2336.
[26] DONG L, WEI F R, ZHOU M, et al. Question answering over freebase with multi-column convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 260-269.
[27] LAN Y S, WANG S H, JIANG J. Knowledge base question answering with a matching-aggregation model and question-specific contextual relations[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(10): 1629-1638.
[28] ZHANG Y Z, LIU K, HE S Z, et al. Question answering over knowledge base with neural attention combining global knowledge information[J]. arXiv:1606.00979, 2016.
[29] HAO Y C, ZHANG Y Z, LIU K, et al. An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2017: 221-231.
[30] GAN L, XIAO Y. Knowledge base question answering based on multi-head attention mechanism and relative position coding[J]. Journal of Physics: Conference Series, 2022: 1-7.
[31] JI Y, LI B H, LIU Y, et al. Multi-space knowledge enhanced question answering over knowledge graph[C]//Proceedings of the Web-Age Information Management: APWeb-WAIM 2021 International Workshops, 2021: 135-140.
[32] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008: 1247-1250.
[33] LEHMANN J, ISELE R, JAKOB M, et al. DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia[J]. Semantic Web, 2015, 6(2): 167-195.
[34] PENNINGTON J, SOCHER R, MANNING C. Glove: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1532-1543.
[35] KIPERWASSER E, GOLDBERG Y. Simple and accurate dependency parsing using bidirectional LSTM feature representations[J]. Transactions of the Association for Computational Linguistics, 2016, 4: 313-327.
[36] LU J S, YANG J W, BATRA D, et al. Hierarchical question-image co-attention for visual question answering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 289-297.
[37] KINGMA D P, BA J, HAMMAD M M. Adam: a method for stochastic optimization[J]. arXiv:1412.6980, 2014. |