计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (7): 325-333.DOI: 10.3778/j.issn.1002-8331.2311-0240

• 工程与应用 • 上一篇    下一篇

融合时空特征的多模态车辆轨迹预测方法

史昕,王浩泽,纪艺,马峻岩   

  1. 1.长安大学 信息工程学院,西安 710064
    2.山东高速信息集团有限公司,济南 250102
  • 出版日期:2025-04-01 发布日期:2025-04-01

Multimodal Vehicle Trajectory Prediction Method with Fusion of Spatio-Temporal Features

SHI Xin, WANG Haoze, JI Yi, MA Junyan   

  1. 1.School of Information Engineering, Chang’an University, Xi’an 710064, China
    2.Shandong Hi-Speed Information Group Co., Ltd., Jinan 250102, China
  • Online:2025-04-01 Published:2025-04-01

摘要: 针对考虑车辆行驶不确定性的轨迹分布准确快速预测问题,提出了一种融合时空特征的多模态车辆轨迹预测方法(GCNTA)。利用空间关联度系数和图卷积神经网络(GCN)实现空间关联特征提取。构建具有时间注意力机制的时域卷积网络(TCN)完成时间特征提取。通过特征融合门控单元实现每个时间步长对应时空特征的自适应融合,并利用门控循环单元(GRU)网络构建解码器进一步生成未来车辆轨迹的概率分布。利用公开的NGSIM数据集对所提出模型进行消融实验及预测精度分析。仿真结果表明,GCNTA模型在预测误差均方根(RMSE)平均值相比GCN、图注意力网络(GAT)和长短期记忆网络(LSTM)模型分别减少15.6%、16.3%和23.8%。

关键词: 车辆轨迹预测, 深度学习, 图神经网络, 时域卷积网络, 注意力机制

Abstract: Regarding the issue of accurate and rapid prediction of trajectory distributions taking into account the uncertainty of vehicle movement, a multimodal trajectory prediction method fusing spatio-temporal features extracted by graph convolutional networks and temporal attentions (GCNTA) is proposed. Firstly, the spatial correlation coefficients and the graph convolutional neural network (GCN) are utilized to extract the spatial correlation features. Secondly, the temporal convolutional network (TCN) network with temporal attention mechanism is constructed to extract the temporal features. Then, the adaptive fusion of spatio-temporal features at each time step is realized by the feature fusion gating unit, and a decoder is constructed to further generate the probability distribution of future vehicle trajectories by using gated recurrent unit (GRU) network. Finally, the proposed model is analyzed based on the ablation experiments and the prediction accuracy by using the publicly available NGSIM dataset. The simulation results show that the GCNTA model can reduce 15.6%, 16.3%, and 23.8% in the root mean square error (RMSE) average compared to the GCN, graph attention network (GAT), and long short-term memory network (LSTM) models, respectively.

Key words: vehicle trajectory prediction, deep learning, graph neural network, temporal convolutional network, attention mechanism