[1] 吴翊恺, 胡启洲, 吴啸宇. 车联网背景下的机动车辆轨迹预测模型[J]. 东南大学学报(自然科学版), 2022, 52(6): 1199-1208.
WU Y K, HU Q Z, WU X Y. Vehicle trajectory prediction model in the context of Internet of vehicles[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(6): 1199-1208.
[2] 李雪松, 张锲石, 宋呈群, 等. 自动驾驶场景下的轨迹预测技术综述[J]. 计算机工程, 2023, 49(5): 1-11.
LI X S, ZHANG Q S, SONG C Q, et al. Review of trajectory prediction technology in autonomous driving scenes[J]. Computer Engineering, 2023, 49(5): 1-11.
[3] LIN C F, ULSOY A G, LEBLANC D J. Vehicle dynamics and external disturbance estimation for vehicle path prediction[J]. IEEE Transactions on Control Systems Technology, 2000, 8(3): 508-518.
[4] 乔少杰, 韩楠, 朱新文, 等. 基于卡尔曼滤波的动态轨迹预测算法[J]. 电子学报, 2018, 46(2): 418-423.
QIAO S J, HAN N, ZHU X W, et al. A dynamic trajectory prediction algorithm based on Kalman filter[J]. Acta Electronica Sinica, 2018, 46(2): 418-423.
[5] 高建, 毛莺池, 李志涛. 基于高斯混合-时间序列模型的轨迹预测[J]. 计算机应用, 2019, 39(8): 2261-2270.
GAO J, MAO Y C, LI Z T. Trajectory prediction based on Gauss mixture time series model[J]. Journal of Computer Applications, 2019, 39(8): 2261-2270.
[6] 季学武, 费聪, 何祥坤, 等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报, 2019, 32(6): 34-42.
JI X W, FEI C, HE X K, et al. Intention recognition and trajectory prediction for vehicles using LSTM network[J]. China Journal of Highway and Transport, 2019, 32(6): 34-42.
[7] 吴晓建, 危一华, 王爱春, 等. 基于融合Dropout与注意力机制的LSTM-GRU车辆轨迹预测[J]. 湖南大学学报(自然科学版), 2023, 50(4): 65-75.
WU X J, WEI Y H, WANG A C, et al. Vehicle trajectory prediction based on LSTM-GRU integrating Dropout and attention mechanism[J]. Journal of Hunan University (Natural Sciences), 2023, 50(4): 65-75.
[8] 方华珍, 刘立, 肖小凤, 等. 混合示教长短时记忆网络的车辆轨迹预测研究[J]. 交通运输系统工程与信息, 2023, 23(4): 80-87.
FANG H Z, LIU L, XIAO X F, et al. Vehicle trajectory prediction based on mixed teaching force long short-term memory[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(4): 80-87.
[9] 黄玲, 崔躜, 游峰, 等. 适用于多车交互场景的车辆轨迹预测模型[J]. 吉林大学学报(工学版), 2024, 54(5): 1188-1195.
HUANG L, CUI Z, YOU F, et al. Vehicle trajectory prediction model for multi-vehicle interaction scenario[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(5): 1188-1195.
[10] 李文礼, 韩迪, 石晓辉, 等. 基于时-空注意力机制的车辆轨迹预测[J]. 中国公路学报, 2023, 36(1): 226-239.
LI W L, HAN D, SHI X H, et al. Vehicle trajectory prediction based on spatial-temporal attention mechanism[J]. China Journal of Highway and Transport, 2023, 36(1): 226-239.
[11] DIEHL F, THOMAS B, MICHAEL T L, et al. Graph neural networks for modelling traffic participant interaction[C]// Proceedings of the Intelligent Vehicles Symposium (IV), 2019: 695-701.
[12] MO X Y, XING Y, LV C. Graph and recurrent neural network-based vehicle trajectory prediction for highway driving[J]. arXiv:2107.03663, 2021.
[13] LI X, YING X W, CHUAH M C. GRIP: graph-based interaction-aware trajectory prediction[C]//Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE, 2019: 3960-3966.
[14] ZHAO T Y, XU Y F, MONFORT M, et al. Multi-agent tensor fusion for contextual trajectory prediction[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 12118-12126.
[15] 陈泽, 杨铀. 多重时空交互下的行人轨迹预测[J]. 华中科技大学学报(自然科学版), 2023, 51(9): 61-67.
CHEN Z, YANG Y. Pedestrian trajectory prediction based on multiple spatio-temporal interaction[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(9): 61-67.
[16] 陈晓伟, 李煊鹏, 张为公. 基于动态图注意力的车辆轨迹预测研究[J]. 汽车技术, 2024(3): 24-30.
CHEN X W, LI X P, ZHANG W G. Research on vehicle trajectory prediction based on dynamic graph attention[J]. Automobile Technology, 2024(3): 24-30.
[17] 曾伟良, 陈漪皓, 姚若愚, 等. 时空图注意力网络在交叉口车辆轨迹预测的应用[J]. 计算机科学, 2021, 48(S1): 334-341.
ZENG W L, CHEN Y H, YAO R Y, et al. Application of spatial-temporal graph attention networks in trajectory prediction for vehicles at intersections[J]. Computer Science, 2021, 48(S1): 334-341.
[18] 刘建敏, 林晖, 汪晓丁. 基于图注意力机制的无地图场景轨迹预测方法[J]. 计算机工程, 2024, 50(7): 144-153.
LIU J M, LIN H, WANG X D. Graph attention mechanism-based method for trajectory prediction in map-free scenes[J]. Computer Engineering, 2024, 50(7): 144-153.
[19] SHENG Z H, XU Y W, XUE S B, et al. Graph-based spatial-temporal convolutional network for vehicle trajectory prediction in autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17654-17665.
[20] WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24.
[21] LIU M P, QIN H, CAO R, et al. Short-term load forecasting based on improved TCN and DenseNet[J]. IEEE Access, 2022, 10: 115945-115957.
[22] MOHAMED A, QIAN K, ELHOSEINY M, et al. Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 14412-14420.
[23] DEO N, TRIVEDI M M. Multi-modal trajectory prediction of surrounding vehicles with maneuver based LSTMs[C]//Proceedings of the 2018 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2018: 1179-1184.
[24] DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2018: 1468-1476. |