计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (8): 108-116.DOI: 10.3778/j.issn.1002-8331.2401-0002

• 模式识别与人工智能 • 上一篇    下一篇

融合ERNIE与知识增强的临床短文本分类研究

温浩,杨洋   

  1. 西安建筑科技大学 信息与控制工程学院,西安 710311
  • 出版日期:2025-04-15 发布日期:2025-04-15

Research on Clinical Short Text Classification by Integrating ERNIE with Knowledge Enhancement

WEN Hao, YANG Yang   

  1. School of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710311, China
  • Online:2025-04-15 Published:2025-04-15

摘要: 提出一种引入专业医疗知识与文本独特知识的ERNIE模型用于识别无规则的临床短文本。目前ERNIE模型具有一定的医疗领域知识,但是在处理下游任务时无法引入专业医疗知识与文本独特知识,因此为提高临床短文本分类的精确度与效率,提出KW-ERNIE-BiGRU模型。该模型通过引入医学知识与文本独特知识的ERNIE模型训练文本的特征向量,利用BiGRU强化上下文信息,最终在输出层进行文本分类。通过在真实的临床文本的验证与对比实验,KW-ERNIE-BiGRU模型的精确率、召回率、宏F1分别为93.4%、92.1%、92.7%,均优于其他模型。

关键词: 深度学习, 知识图谱, ERNIE, 语义强化, 临床短文本分类

Abstract: This paper proposes an ERNIE model that incorporates professional medical knowledge and unique textual knowledge for identifying irregular clinical short texts. At present, the ERNIE model has certain knowledge in the medical field, but it cannot introduce professional medical knowledge and unique textual knowledge when processing downstream tasks. Therefore, the paper proposes the KW-ERNIE-BiGRU model to improve the accuracy and efficiency of clinical short text classification. The model trains text feature vectors by introducing medical knowledge and unique textual knowledge into the ERNIE model, uses BiGRU to capture contextual information, and finally performs text classification in the output layer. Through verification and comparative experiments in real clinical texts, the accuracy, recall, and macro F1 of the KW-ERNIE-BiGRU model are 93.4%, 92.1%, and 92.7%, respectively, which are superior to other models.

Key words: deep learning, graph knowledge, ERNIE, semantic reinforcement, clinical short text classification