计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (9): 25-40.DOI: 10.3778/j.issn.1002-8331.2410-0012

• 热点与综述 • 上一篇    下一篇

深度学习框架下的红外与可见光图像融合方法综述

李淑慧,蔡伟,王鑫,高蔚洁,狄星雨   

  1. 火箭军工程大学 兵器发射理论与技术国家重点学科实验室,西安 710025
  • 出版日期:2025-05-01 发布日期:2025-04-30

Review of Infrared and Visible Image Fusion Methods in Deep Learning Frameworks

LI Shuhui, CAI Wei, WANG Xin, GAO Weijie, DI Xingyu   

  1. Armament Launch Theory and Technology Key Discipline Laboratory of PRC, Rocket Force University of Engineering, Xi’an 710025, China
  • Online:2025-05-01 Published:2025-04-30

摘要: 红外与可见光图像融合(infrared and visible image fusion,IVIF)将红外图像与可见光图像的互补信息融合,提升图像质量以支持下游任务。鉴于深度学习在图像融合方面的优势,将其应用在IVIF领域已成为研究热点。对深度学习框架下的红外与可见光图像融合方法进行梳理分析,根据不同的融合框架将融合方法分为基于自编码器、卷积神经网络、生成对抗网络和变换器,并对比分析这四类方法的特点;综述了IVIF的主要应用领域、常用的6个数据集和8个评价指标,并在典型数据集上对各类主流IVIF方法进行定性和定量评估。最后,总结了现有IVIF方法的局限性,并展望了IVIF的未来研究方向。

关键词: 深度学习, 图像融合, 红外图像, 可见光图像

Abstract: Infrared and visible image fusion (IVIF) fuses complementary information from infrared and visible images to improve image quality and support downstream tasks. Due to the advantages of deep learning in image fusion, its application in IVIF field has become a research hotspot. The infrared and visible image fusion methods deep learning-based are summarized and analyzed. According to different fusion frameworks, the fusion methods are divided into four categories: autoencoder-based, convolutional neural network-based, generative adversarial network-based and Transformer-based. Moreover, the characteristics of each IVIF methods are compared and analyzed. The main application in IVIF fields, 6 common datasets and 8 evaluation metrics are reviewed,and qualitative evaluation and quantitative evaluation of various mainstream IVIF methods on typical datasets are carried out. Finally, the limitations of existing IVIF methods are summarized, and the future IVIF research directions are prospected.

Key words: deep learning, image fusion, infrared image, visible image