计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (9): 80-101.DOI: 10.3778/j.issn.1002-8331.2410-0315

• 热点与综述 • 上一篇    下一篇

面向目标检测的物理对抗攻击研究进展

陈浞,刘东青,唐平华,黄燕,张文霞,贾岩,程海峰   

  1. 1.湘潭大学 物理与光电工程学院,湖南 湘潭 411105
    2.国防科技大学 空天科学学院,长沙 410073
  • 出版日期:2025-05-01 发布日期:2025-04-30

Research Progress on Physical Adversarial Attacks for Target Detection

CHEN Zhuo, LIU Dongqing, TANG Pinghua, HUANG Yan, ZHANG Wenxia, JIA Yan, CHENG Haifeng   

  1. 1.School of Physics and Optoelectronic Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
    2.College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • Online:2025-05-01 Published:2025-04-30

摘要: 深度神经网络强大的特征学习能力为计算机视觉任务提供了强有力的支撑,但已被证明容易受到对抗性样本的干扰从而输出错误的结果。现有的对抗攻击可分为数字攻击和物理攻击,与在数字像素中产生扰动的数字攻击相比,物理对抗性样本在现实世界中产生的误导作用更具有威胁性。目标检测任务作为计算机视觉领域中应用最广泛的任务之一,在自动驾驶、智能监控以及医学图像分析等领域发挥重要作用。针对目标检测任务的物理攻击,阐述了攻击的基本流程。根据不同电磁波波段将目标检测任务分为可见光目标检测和红外目标检测,并详细讨论了这两类任务中不同的物理攻击方法。探讨了当前物理对抗性攻击面临的问题以及未来可能值得研究的方向。

关键词: 深度学习, 物理攻击, 目标检测

Abstract: Deep neural networks demonstrate strong feature learning capabilities that support computer vision tasks but they are vulnerable to adversarial examples, leading to erroneous outputs. Adversarial attacks are classified into digital attacks and physical attacks, with physical adversarial samples posing a greater threat in the real world compared to digital attacks that perturb pixel values. Object detection, one of the most widely used tasks in computer vision, plays a crucial role in applications such as autonomous driving, intelligent surveillance, and medical image analysis. The process of physical attacks on object detection tasks is first outlined. Object detection is then categorized into visible light detection and infrared detection based on different electromagnetic wave bands, with a discussion of various physical attack methods for each task. Finally, challenges faced by current physical adversarial attacks are examined.

Key words: deep learning, physical attack, target detection