[1] 孟凡兴, 韩萌, 李春鹏, 等. 概念漂移检测与适应方法综述[J]. 计算机工程与应用, 2024, 60(4): 75-88.
MENG F X , HAN M , LI C P , et al. Survey of concept drift detection and adaptation methods[J]. Computer Engineering and Applications, 2024, 60(4): 75-88.
[2] WIDMER G, KUBAT M. Learning in the presence of concept drift and hidden contexts[J]. Machine Learning, 1996, 23: 69-101.
[3] PEREZ M, SOMENZI F, TRIVEDI A. A PAC learning algorithm for LTL and omega-regular objectives in MDPs[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 21510-21517.
[4] FRIAS-BLANCO I, DEL CAMPO-áVILA J, RAMOS-JIMENEZ G, et al. Online and non-parametric drift detection methods based on Hoeffding’s bounds[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 27(3): 810-823.
[5] GAMA J, MEDAS P, CASTILLO G, et al. Learning with drift detection[C]//Proceedings of the 17th Brazilian Symposium on Artificial Intelligence, Sao Luis, Maranhao, Brazil, September 29-October 1, 2004. Berlin, Heidelberg: Springer, 2004: 286-295.
[6] PESARANGHADER A, VIKTOR H L. Fast Hoeffding drift detection method for evolving data streams[C]//Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2016), 2016: 96-111.
[7] BAIDARI I, HONNIKOLL N. Bhattacharyya distance based concept drift detection method for evolving data stream[J]. Expert Systems with Applications, 2021, 183: 115303.
[8] CHEN Z, HAN M, WU H, et al. A multi-level weighted concept drift detection method[J]. The Journal of Supercomputing, 2023, 79(5): 5154-5180.
[9] YU H, LIU W, LU J, et al. Detecting group concept drift from multiple data streams[J]. Pattern Recognition, 2023, 134: 109113.
[10] HAN M, CHEN Z, LI M, et al. A survey of active and passive concept drift handling methods[J]. Computational Intelligence, 2022, 38(4): 1492-1535.
[11] GUO H, LI H, REN Q, et al. Concept drift type identification based on multi-sliding windows[J]. Information Sciences, 2022, 585: 1-23.
[12] GAMA J, ?LIOBAIT? I, BIFET A, et al. A survey on concept drift adaptation[J]. ACM Computing Surveys (CSUR), 2014, 46(4): 1-37.
[13] WANG S, MACHIDA F. A robustness evaluation of concept drift detectors against unreliable data streams[C]//Proceedings of the 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), 2021: 569-574.
[14] LU J, LIU A, DONG F, et al. Learning under concept drift: a review[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(12): 2346-2363.
[15] BARROS R S M, CABRAL D R L, GON?ALVES JR P M, et al. RDDM: reactive drift detection method[J]. Expert Systems with Applications, 2017, 90: 344-355.
[16] HAN M, MU D, LI A, et al. Concept drift detection methods based on different weighting strategies[J]. International Journal of Machine Learning and Cybernetics, 2024,15: 4709-4732.
[17] CHEN J, YANG S, GAO T, et al. Multi-type concept drift detection under a dual-layer variable sliding window in frequent pattern mining with cloud computing[J]. Journal of Cloud Computing, 2024, 13(1): 40.
[18] 胡阳, 孙自强. 基于McDiarmid 边界的自适应加权概念漂移检测方法[J]. 华东理工大学学报(自然科学版), 2023, 49(3): 1-10.
HU Y, SUN Z Q. Weight adaptive concept drift detection method based on McDiarmid boundary[J]. Journal of East China University of Science and Technology, 2023, 49(3): 1-10.
[19] WANG P, JIN N, WOO W L, et al. Noise tolerant drift detection method for data stream mining[J]. Information Sciences, 2022, 609: 1318-1333.
[20] NUNES Y T P, GUEDES L A. Concept drift detection based on typicality and eccentricity[J]. IEEE Access, 2024,12: 13795-13808.
[21] SUN Y, MI J, JIN C. Entropy-based concept drift detection in information systems[J]. Knowledge-Based Systems, 2024,290:111596.
[22] KOLMOGOROV A N. On tables of random numbers[J]. Theoretical Computer Science, 1998, 207: 387-395.
[23] MAVRIKIOU P M. Kolmogorov inequalities for the partial sum of independent Bernoulli random variables[J]. Statistics & Probability Letters, 2007, 77(11): 1117-1122.
[24] BIFET A, HOLMES G, PFAHRINGER B, et al. MOA: massive online analysis, a framework for stream classification and clustering[C]//Proceedings of the First Workshop on Applications of Pattern Analysis, 2010: 44-50.
[25] LI A, HAN M, MU D, et al. Online active learning method for multi-class imbalanced data stream[J]. Knowledge and Information Systems, 2024, 66(4): 2355-2391.
[26] BIFET A, READ J, ?LIOBAIT? I, et al. Pitfalls in benchmarking data stream classification and how to avoid them[C]//Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases(ECML PKDD 2013), Prague, Czech Republic, September 23-27, 2013. Berlin, Heidelberg: Springer, 2013: 465-479.
[27] BIFET A, HOLMES G, PFAHRINGER B, et al. New ensemble methods for evolving data streams[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2009: 139-148.
[28] PESARANGHADER A, VIKTOR H L, PAQUET E. McDiarmid drift detection methods for evolving data streams[C]//Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), 2018: 1-9.
[29] BIFET A. Classifier concept drift detection and the illusion of progress[C]// Proceedings of the 16th International Conference on Artificial Intelligence and Soft Computing(ICAISC 2017), 2017: 715-725. |