计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (12): 45-68.DOI: 10.3778/j.issn.1002-8331.2410-0016

• 热点与综述 • 上一篇    下一篇

半监督学习方法在作物图像处理中的应用进展

陈曦,刘建平,周国民,王健,张越,邢嘉璐   

  1. 1.北方民族大学 计算机科学与工程学院,银川 750021
    2.北方民族大学 图像图形智能处理国家民委重点实验室,银川 750021
    3.农业农村部南京农业机械化研究所,南京 210014
    4.国家农业科学数据中心,北京 100081
    5.中国农业科学院 农业信息研究所,北京 100081
  • 出版日期:2025-06-15 发布日期:2025-06-13

Survey of Advances in Semi-Supervised Learning Methods for Crop Image Processing Applications

CHEN Xi, LIU Jianping, ZHOU Guomin, WANG Jian, ZHANG Yue, XING Jialu   

  1. 1.College of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China
    2.The Key Laboratory of Images & Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
    3.Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
    4.National Agriculture Science Data Center, Beijing 100081, China 
    5.Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Online:2025-06-15 Published:2025-06-13

摘要: 半监督学习通过结合少量标注数据和大量未标注数据,显著减少数据标注需求和成本,同时提高模型的泛化能力和性能,为深度学习和机器学习在资源受限环境中的发展提供了新的路线。随着半监督学习在图像处理领域取得突破性进展,以现代农业为调查对象,探讨半监督学习方法在农业生产中的作用。根据半监督基础定义和假设提出半监督概念模型,同时按照利用监督信号的差异将半监督学习分为伪标签和无监督正则化。从目标检测、图像分割、图像分类和多任务联合学习出发,对农业作物管理、杂草管理、水果检测、植物健康、植物表型和叶片分类等具体任务进行全面回顾。分析并讨论了半监督学习在农业图像处理领域的未来研究方向。

关键词: 半监督, 作物, 图像处理, 目标检测, 图像分割, 图像分类

Abstract: Semi-supervised learning provides a new route for deep learning and machine learning in resource-constrained environments by combining a small amount of labeled data with a large amount of unlabeled data, significantly reducing the data labeling requirements and costs, while improving the generalization ability and performance of models. With the breakthrough progress of semi-supervised learning in the field of image processing, this review investigates the role of semi-supervised learning methods in agricultural production with modern agriculture as the object of investigation. A semi-supervised conceptual model is proposed, grounded in foundational definitions and assumptions. Semi-supervised learning is then classified into pseudo-labeling and unsupervised regularization, based on differences in the use of supervised signals. Starting from object detection, image segmentation, image classification, and multi-task joint learning, a comprehensive review is conducted on specific tasks such as agricultural crop management, weed management, fruit detection, plant health, plant phenotyping, and leaf classification. Future research directions for semi-supervised learning in agricultural image processing are analyzed and discussed.

Key words: semi-supervised, crop,  , image processing,  , target detection,  , image segmentation,  , image classification