
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (12): 69-92.DOI: 10.3778/j.issn.1002-8331.2412-0423
张璇,李文静,刘志强,高源蔚,胡志鹏
出版日期:2025-06-15
发布日期:2025-06-13
ZHANG Xuan, LI Wenjing, LIU Zhiqiang, GAO Yuanwei, HU Zhipeng
Online:2025-06-15
Published:2025-06-13
摘要: 在能源短缺和生态环境恶化的背景下,可再生能源日益重要,风力发电作为三大新能源之一,近年来得到了全球广泛应用,而风力发电机叶片作为关键部件,承担着捕获风能并转化为机械能的核心功能,其损坏将显著降低发电效率和缩短设备使用寿命,因此,风机叶片的缺陷检测技术已成为研究的热点,主要针对图层失效、复合层失效、胶接失效及组件失效等多种损伤类型。总结了多种无损缺陷检测技术(WBT)的基本原理、研究进展以及各自的优缺点,从适用场景、技术优势与局限性等方面对不同检测方法进行了系统归纳与分析,结合风力发电工程的实际需求,提出了各类检测技术的应用建议,并展望了风机叶片缺陷检测领域的未来发展方向,旨在为风力发电行业的持续健康发展提供有力支持。
张璇, 李文静, 刘志强, 高源蔚, 胡志鹏. 风电机叶片材料缺陷检测技术的发展与挑战综述[J]. 计算机工程与应用, 2025, 61(12): 69-92.
ZHANG Xuan, LI Wenjing, LIU Zhiqiang, GAO Yuanwei, HU Zhipeng. Review on Development and Challenges of Wind Turbine Blade Material Defect Detection Technology[J]. Computer Engineering and Applications, 2025, 61(12): 69-92.
| [1] 温源远, 蓝艳, 于晓龙, 等. 可再生能源的发展现状及趋势[J]. 环境保护, 2024, 52(5): 68-72. WEN Y Y, LAN Y, YU X L, et al. The development status and trends of renewable energies[J]. Environmental Protection, 2024, 52(5): 68-72. [2] MUFUTAU OPEYEMI B. Path to sustainable energy consumption: the possibility of substituting renewable energy for non-renewable energy[J]. Energy, 2021, 228: 120519. [3] 《中国可再生能源发展报告2023年度》《中国可再生能源工程造价管理报告2023年度》发布[J]. 水力发电, 2024, 50(8): 43. China renewable energy development report 2023 and China renewable energy project cost management report 2023 were released[J]. Water Power, 2024, 50(8): 43. [4] 周丹丹, 胡生荣. 内蒙古风能资源及其开发利用现状分析[J]. 干旱区资源与环境, 2018, 32(5): 177-182. ZHOU D D, HU S R. General situations of wind energy resources in Inner Mongolia and its exploitation[J]. Journal of Arid Land Resources and Environment, 2018, 32(5): 177-182. [5] ALI FARHAN OGAILI A, ABDULHADY JABER A, HAMZAH M N. Wind turbine blades fault diagnosis based on vibration dataset analysis[J]. Data in Brief, 2023, 49: 109414. [6] CHOU J S, CHIU C K, HUANG I K, et al. Failure analysis of wind turbine blade under critical wind loads[J]. Engineering Failure Analysis, 2013, 27: 99-118. [7] 朱蓉, 王阳, 向洋, 等. 中国风能资源气候特征和开发潜力研究[J]. 太阳能学报, 2021, 42(6): 409-418. ZHU R, WANG Y, XIANG Y, et al. Stydy on climate characteristics and development potential of wind energy resources in China[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 409-418. [8] 朱蓉, 向洋, 孙朝阳, 等. 中国典型复杂地形风能资源特性及其形成机制[J]. 太阳能学报, 2024, 45(4): 226-237. ZHU R, XIANG Y, SUN C Y, et al. Characteristics and formation mechanism of wind energy resources in typical complex terrain in China[J]. Acta Energiae Solaris Sinica, 2024, 45(4): 226-237. [9] SAVIN A,ROSU D. Effective methods for structural health monitoring of critical zones of scalable wind turbine blades[J]. Strojni?ki Vestnik - Journal of Mechanical Engineering, 2018, 64(11):680-689. [10] REDDY S S P, SURESH R, HANAMANTRAYGOUDA M B, et al. Use of composite materials and hybrid composites in wind turbine blades[J]. Materials Today: Proceedings, 2021, 46: 2827-2830. [11] TENG H W, LI S J, CAO Z, et al. Carbon fiber composites for large-scale wind turbine blades: applicability study and comprehensive evaluation in China[J]. Journal of Marine Science and Engineering, 2023, 11(3): 624. [12] MISHNAEVSKY L, BRANNER K, PETERSEN H N, et al. Materials for wind turbine blades: an overview[J]. Materials, 2017, 10(11): 1285. [13] CHEN P, CHEN B. Influence of the blade size on the dynamic characteristic damage identification of wind turbine blades[J]. Nonlinear Engineering, 2023, 12(1): 20220261. [14] MOURAD A I, ALMOMANI A, AHMAD SHEIKH I, et al. Failure analysis of gas and wind turbine blades: a review[J]. Engineering Failure Analysis, 2023, 146: 107107. [15] MISHNAEVSKY L, THOMSEN K. Costs of repair of wind turbine blades: influence of technology aspects[J]. Wind Energy, 2020, 23(12): 2247-2255. [16] JURECZKO M, MRóWKA M. Multiobjective optimization of composite wind turbine blade[J]. Materials, 2022, 15(13): 4649. [17] LIAO G H, LIAO S W, HONG Z M, et al. On-line damage assessment of wind turbine blade full-size structural fatigue testing[J]. Journal of Physics: Conference Series, 2022, 2310(1): 012049. [18] KAEWNIAM P, CAO M S, ALKAYEM N F, et al. Recent advances in damage detection of wind turbine blades: a state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112723. [19] FOSSUM P K, FR?YD L, DAHLHAUG O G. Design and fatigue performance of large utility-scale wind turbine blades[J]. Journal of Solar Energy Engineering, 2013, 135(3): 031019. [20] MISHNAEVSKY L. Repair of wind turbine blades: review of methods and related computational mechanics problems[J]. Renewable Energy, 2019, 140: 828-839. [21] ZHANG M, YIN L J. Solar cell surface defect detection based on improved YOLO v5[J]. IEEE Access, 2022, 10: 80804-80815. [22] MCGUGAN M, MISHNAEVSKY L. Damage mechanism based approach to the structural health monitoring of wind turbine blades[J]. Coatings, 2020, 10(12): 1223. [23] ATAYA S, AHMED M M Z. Damages of wind turbine blade trailing edge: forms, location, and root causes[J]. Engineering Failure Analysis, 2013, 35: 480-488. [24] SEIBI C, WARD Z, MOHAMMAD A S M, et al. Locating and extracting wind turbine blade cracks using haar-like features and clustering[C]//Proceedings of the 2022 Intermountain Engineering, Technology and Computing. Piscataway: IEEE, 2022: 1-5. [25] SHANKAR VERMA A, JIANG Z Y, REN Z R, et al. Effects of onshore and offshore environmental parameters on the leading edge erosion of wind turbine blades: a comparative study[J]. Journal of Offshore Mechanics and Arctic Engineering, 2021, 143(4): 042001. [26] ZHANG C Z, CHEN H P, TEE K F, et al. Reliability-based lifetime fatigue damage assessment of offshore composite wind turbine blades[J]. Journal of Aerospace Engineering, 2021, 34(3): 04021019. [27] LI D W, LI Y D, XIE Q, et al. Tiny defect detection in high-resolution aero-engine blade images via a coarse-to-fine framework[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3512712. [28] TIAN K Q, SONG L, CHEN Y Y, et al. Stress coupling analysis and failure damage evaluation of wind turbine blades during strong winds[J]. Energies, 2022, 15(4): 1339. [29] 马超, 王玉娜, 武耀罡, 等. 航空发动机风扇叶片硬物冲击损伤特征[J]. 航空动力学报, 2017, 32(5): 1105-1111. MA C, WANG Y N, WU Y G, et al. Hard object impact damage characteristics of aero engine fan blade[J]. Journal of Aerospace Power, 2017, 32(5): 1105-1111. [30] MATSUI T, YAMAMOTO K, SUMI S, et al. Detection of lightning damage on wind turbine blades using the SCADA system[J]. IEEE Transactions on Power Delivery, 2021, 36(2): 777-784. [31] MORONEY P D, VERMA A S. Durability and damage tolerance analysis approaches for wind turbine blade trailing edge life prediction: a technical review[J]. Energies, 2023, 16(24): 7934. [32] MISHNAEVSKY L. Root causes and mechanisms of failure of wind turbine blades: overview[J]. Materials, 2022, 15(9): 2959. [33] BLUMENDELLER E, HOFS?? M, GOERLITZ A, et al. Impact of wind turbine operation conditions on infrasonic and low frequency sound induced by on-shore wind turbines[J]. Journal of Physics: Conference Series, 2022, 2265(3): 032048. [34] MANIACI D C, WESTERGAARD C, HSIEH A, et al. Uncertainty quantification of leading edge erosion impacts on wind turbine performance[J]. Journal of Physics: Conference Series, 2020, 1618(5): 052082. [35] XU Y M, ZHANG K, WANG L. Metal surface defect detection using modified YOLO[J]. Algorithms, 2021, 14(9): 257. [36] CARNERO A, MARTíN C, DíAZ M. Structural health and intelligent monitoring of wind turbine blades with a motorized telescope[C]//Proceedings of the 2022 21st IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE, 2022: 105-112. [37] FRUSQUE G, MITCHELL D, BLANCHE J, et al. Non-contact sensing for anomaly detection in wind turbine blades: a focus-SVDD with complex-valued auto-encoder approach[J]. Mechanical Systems and Signal Processing, 2024, 208: 111022. [38] BALL A, GELMAN L, RAO B K N. Advances in asset management and condition monitoring[C]//Proceedings of the International Congress on Condition Monitoring and Diagnostic Engineering Management (COMADEM). Cham: Springer International Publishing, 2020. [39] SONG X W, XING Z T, JIA Y, et al. Review on the damage and fault diagnosis of wind turbine blades in the germination stage[J]. Energies, 2022, 15(20): 7492. [40] CAZZULANI G, CINQUEMANI S, BENEDETTI L, et al. Load estimation and vibration monitoring of scale model wind turbine blades through optical fiber sensors[J]. Engineering Research Express, 2021, 3(2): 025036. [41] WORMS K, KLAMOURIS C, WEGH F, et al. Reliable and lightning-safe monitoring of wind turbine rotor blades using optically powered sensors[J]. Wind Energy, 2017, 20(2): 345-360. [42] HSU T Y, SHIAO S Y, LIAO W I. Damage detection of rotating wind turbine blades using local flexibility method and long-gauge fiber Bragg grating sensors[J]. Measurement Science and Technology, 2018, 29(1): 015108. [43] ZHU P Y, FENG X B, LIU Z, et al. Reliable packaging of optical fiber Bragg grating sensors for carbon fiber composite wind turbine blades[J]. Composites Science and Technology, 2021, 213: 108933. [44] DOWNEY A, UBERTINI F, LAFLAMME S. Algorithm for damage detection in wind turbine blades using a hybrid dense sensor network with feature level data fusion[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168: 288-296. [45] GUAN X, MU Q Z, YIN X J, et al. Characterization and prediction of wind turbine blade damage based on fiber grating sensor[J]. EAI Endorsed Transactions on Energy Web, 2024, 11: 1-7. [46] CAO Y, WANG Q, LI J, et al. Wind turbine blade root load monitoring based on fiber bragg grating sensor[C]//Proceedings of the 3rd International Conference on Green Energy, Environment and Sustainable Development (GEESD2022),2022. [47] DU Y, ZHOU S X, JING X J, et al. Damage detection techniques for wind turbine blades: a review[J]. Mechanical Systems and Signal Processing, 2020, 141: 106445. [48] BEJGER A, DRZEWIENIECKI J B, BARTOSZKO P, et al. The use of coherence functions of acoustic emission signals as a method for diagnosing wind turbine blades[J]. Energies, 2023, 16(22): 7474. [49] INALPOLAT M, NIEZRECKI C. Acoustic sensing based operational monitoring of wind turbine blades[J]. Journal of Physics: Conference Series, 2020, 1452(1): 012050. [50] KRAUSE T, OSTERMANN J. Damage detection for wind turbine rotor blades using airborne sound[J]. Structural Control and Health Monitoring, 2020, 27(5): e2520. [51] ZHAO Z M, CHEN N Z. Acoustic emission based damage source localization for structural digital twin of wind turbine blades[J]. Ocean Engineering, 2022, 265: 112552. [52] LIU Z P, WANG X F, ZHANG L. Fault diagnosis of industrial wind turbine blade bearing using acoustic emission analysis[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 6630-6639. [53] XU D, LIU P F, CHEN Z P. Damage mode identification and singular signal detection of composite wind turbine blade using acoustic emission[J]. Composite Structures, 2021, 255: 112954. [54] YAN Q, CHE X C, LI S, et al. π-FBG fiber optic acoustic emission sensor for the crack detection of wind turbine blades[J]. Sensors, 2023, 23(18): 7821. [55] PAN X, LIU Z D, XU R, et al. Early warning of damaged wind turbine blades using spatial-temporal spectral analysis of acoustic emission signals[J]. Journal of Sound and Vibration, 2022, 537: 117209. [56] LI X L. Few-shot wind turbine blade damage early warning system based on sound signal fusion[J]. Multimedia Systems, 2023, 29(5): 2913-2922. [57] TSAI T C, WANG C N. Acoustic-based method for identifying surface damage to wind turbine blades by using a convolutional neural network[J]. Measurement Science and Technology, 2022, 33(8): 085601. [58] LI S W, SHI K Z, YANG K, et al. Research on the defect types judgment in wind turbine blades using ultrasonic NDT[J]. IOP Conference Series: Materials Science and Engineering, 2015, 87: 012056. [59] CORAMIK M, EGE Y. Discontinuity inspection in pipelines: a comparison review[J]. Measurement, 2017, 111: 359-373. [60] YANG K, RONGONG J A, WORDEN K. Damage detection in a laboratory wind turbine blade using techniques of ultrasonic NDT and SHM[J]. Strain, 2018, 54(6): e12290. [61] GARCíA MARQUEZ F P, GóMEZ MU?OZ C Q. A new approach for fault detection, location and diagnosis by ultrasonic testing[J]. Energies, 2020, 13(5): 1192. [62] PARK B, SOHN H, MALINOWSKI P, et al. Delamination localization in wind turbine blades based on adaptive time-of-flight analysis of noncontact laser ultrasonic signals[J]. Nondestructive Testing and Evaluation, 2017, 32(1): 1-20. [63] TIWARI K A, RAISUTIS R, TUMSYS O, et al. Defect estimation in non-destructive testing of composites by ultrasonic guided waves and image processing[J]. Electronics, 2019, 8(3): 315. [64] WANG P, ZHOU W S, BAO Y Q, et al. Ice monitoring of a full-scale wind turbine blade using ultrasonic guided waves under varying temperature conditions[J]. Structural Control and Health Monitoring, 2018, 25(4): e2138. [65] RAI?UTIS R, TIWARI K A, ?UKAUSKAS E, et al. A novel defect estimation approach in wind turbine blades based on phase velocity variation of ultrasonic guided waves[J]. Sensors, 2021, 21(14): 4879. [66] SUN X D, WU W D, WANG J, et al. Optimization design of negative pressure adsorption car for internal defect detection of wind turbine blades on UAV[J]. AIP Advances, 2023, 13(2): 025133. [67] AIHARA A, KAWAGUCHI T, MIKI N, et al. A vibration estimation method for wind turbine blades[J]. Experimental Mechanics, 2017, 57(8): 1213-1224. [68] KHADKA A, FICK B, AFSHAR A, et al. Non-contact vibration monitoring of rotating wind turbines using a semi-autonomous UAV[J]. Mechanical Systems and Signal Processing, 2020, 138: 106446. [69] WANG W Y, YANG J Y, DAI J C, et al. EEMD-based videogrammetry and vibration analysis method for rotating wind power blades[J]. Measurement, 2023, 207: 112423. [70] LOSS T, BERGMANN A. Vibration-based fingerprint algorithm for structural health monitoring of wind turbine blades[J]. Applied Sciences, 2021, 11(9): 4294. [71] MUXICA D, RIVERA S, ORCHARD M E, et al. Autonomous sensor system for low-capacity wind turbine blade vibration measurement[J]. Sensors, 2024, 24(6): 1733. [72] FREMMELEV M A, LADPLI P, ORLOWITZ E, et al. A full-scale wind turbine blade monitoring campaign: detection of damage initiation and progression using medium-frequency active vibrations[J]. Structural Health Monitoring, 2023, 22(6): 4171-4193. [73] DE ABREU MELO F E, DE MOURA E P, COSTA ROCHA P A, et al. Unbalance evaluation of a scaled wind turbine under different rotational regimes via detrended fluctuation analysis of vibration signals combined with pattern recognition techniques[J]. Energy, 2019, 171: 556-565. [74] YANG R Z, HE Y Z, MANDELIS A, et al. Induction infrared thermography and thermal-wave-radar analysis for imaging inspection and diagnosis of blade composites[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12): 5637-5647. [75] SANATI H, WOOD D, SUN Q. Condition monitoring of wind turbine blades using active and passive thermography[J]. Applied Sciences, 2018, 8(10): 2004. [76] HWANG S, AN Y K, KIM J M, et al. Monitoring and instantaneous evaluation of fatigue crack using integrated passive and active laser thermography[J]. Optics and Lasers in Engineering, 2019, 119: 9-17. [77] CHEN X, JANELIUKSTIS R, SARHADI A. Thermographic data analytics-based damage characterization in a large-scale composite structure under cyclic loading[J]. Composite Structures, 2022, 290: 115525. [78] JENSEN F, JERG J F, SORG M, et al. Active thermography for the interpretation and detection of rain erosion damage evolution on GFRP airfoils[J]. NDT & E International, 2023, 135: 102778. [79] JENSEN F, SORG M, VON FREYBERG A, et al. Detection of erosion damage on airfoils by means of thermographic flow visualization[J]. European Journal of Mechanics-B/Fluids, 2024, 104: 123-135. [80] PETERSEN C R, F?STER S, BECH J I, et al. Non-destructive and contactless defect detection inside leading edge coatings for wind turbine blades using mid-infrared optical coherence tomography[J]. Wind Energy, 2023, 26(5): 458-468. [81] ZHOU W J, WANG Z J, ZHANG M S, et al. Wind turbine actual defects detection based on visible and infrared image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3509208. [82] MEMARI M, SHEKARAMIZ M, MASOUM M A S, et al. Data fusion and ensemble learning for advanced anomaly detection using multi-spectral RGB and thermal imaging of small wind turbine blades[J]. Energies, 2024, 17(3): 673. [83] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. [84] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. [85] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [86] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. [87] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018. [88] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[J]. arXiv:2004.10934,2020. [89] WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458,2024. [90] CAMASSA D, CASTELLANO A, FRACCALVIERI G, et al. Damage identification of a wind turbine blade from interferometric radar tests[C]//Proceedings of the 2023 IEEE International Workshop on Metrology for Living Environment. Piscataway: IEEE, 2023: 246-250. [91] YI H K, JIANG Q C. Graph-based semisupervised learning for icing fault detection of wind turbine blade[J]. Measurement Science and Technology, 2021, 32(3): 035117. [92] ZHANG J J, COSMA G, WATKINS J. Image enhanced mask R-CNN: a deep learning pipeline with new evaluation measures for wind turbine blade defect detection and classification[J]. Journal of Imaging, 2021, 7(3): 46. [93] YANG P, DONG C Y, ZHAO X Y, et al. The surface damage identifications of wind turbine blades based on ResNet50 algorithm[C]//Proceedings of the 2020 39th Chinese Control Conference. Piscataway: IEEE, 2020: 6340-6344. [94] AMINZADEH A, DIMITROVA M, MEIABADI M S, et al. Non?contact inspection methods for wind turbine blade maintenance: techno-economic review of techniques for integration with industry 4.0[J]. Journal of Nondestructive Evaluation, 2023, 42(2): 54. [95] ALTICE B, NAZARIO E, DAVIS M, et al. Anomaly detection on small wind turbine blades using deep learning algorithms[J]. Energies, 2024, 17(5): 982. [96] LIU Z H, CHEN Q, WEI H L, et al. Channel-spatial attention convolutional neural networks trained with adaptive learning rates for surface damage detection of wind turbine blades[J]. Measurement, 2023, 217: 113097. [97] QIN H W, ZOU J, HE B G, et al. Damage identification method of wind turbine generator system blades based on image processing technology[J]. Traitement Du Signal, 2023, 40(2): 825-833. [98] ZHU X H, GUO Z W, ZHOU Q J, et al. Damage identification of wind turbine blades based on deep learning and ultrasonic testing[J]. Nondestructive Testing and Evaluation, 2025, 40(2): 508-533. [99] LI W R, ZHAO W H, GU J Z, et al. Dynamic characteristics monitoring of large wind turbine blades based on target-free DSST vision algorithm and UAV[J]. Remote Sensing, 2022, 14(13): 3113. [100] ZHANG C, YANG T, YANG J. Image recognition of wind turbine blade defects using attention-based MobileNetv1-YOLOv4 and transfer learning[J]. Sensors, 2022, 22(16): 6009. [101] LI C Z, HE W F, NIE X F, et al. Intelligent damage recognition of composite materials based on deep learning and ultrasonic testing[J]. 2021, 11(12): 125227. [102] SUN H H, ZHANG W T, MA D L, et al. YOLO- WTDL: a lightweight wind turbine blades defect detection model based on YOLOv8[C]//Proceedings of the 2024 7th Asia Conference on Energy and Electrical Engineering. Piscataway: IEEE, 2024: 46-51. [103] ZHAO Y, ZHANG Y J, LI Z Q, et al. AI-enabled and multimodal data driven smart health monitoring of wind power systems: a case study[J]. Advanced Engineering Informatics, 2023, 56: 102018. [104] JIA X D, CHEN X. AI-based optical-thermal video data fusion for near real-time blade segmentation in normal wind turbine operation[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107325. [105] ZHANG R, WEN C B. SOD-YOLO: a small target defect detection algorithm for wind turbine blades based on improved YOLOv5[J]. Advanced Theory and Simulations, 2022, 5(7): 2100631. [106] 刘丽, 闫利, 谢洪, 等. 一种面向绝缘子缺陷检测的YOLOv5l优化模型[J]. 测绘科学, 2024, 49(1): 143-152. LIU L, YAN L, XIE H, et al. Enhanced YOLOv5l model for precise insulator defect detection[J]. Science of Surveying and Mapping, 2024, 49(1): 143-152. [107] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160. WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160. [108] CHEN Q, LIU Z H, LV M Y. Attention mechanism-based CNN for surface damage detection of wind turbine blades[C]//Proceedings of the 2022 International Conference on Machine Learning, Cloud Computing and Intelligent Mining. Piscataway: IEEE, 2022: 313-319. [109] LIU H W, ZHANG Z C, JIA H B, et al. A novel method to predict the stiffness evolution of in-service wind turbine blades based on deep learning models[J]. Composite Structures, 2020, 252: 112702. [110] ZHANG Y Y, WANG L, HUANG C, et al. Wind turbine blade damage detection based on the improved YOLOv5 algorithm[C]//Proceedings of the 2023 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). Piscataway: IEEE, 2023: 1353-1357. [111] JAIKRISHNA M A, VENKATESH S N, SUGUMARAN V, et al. Transfer learning-based fault detection in wind turbine blades using radar plots and deep learning models[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2023, 45(4): 10789-10801. [112] SARKAR D, GUNTURI S K. Wind turbine blade structural state evaluation by hybrid object detector relying on deep learning models[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(8): 8535-8548. [113] CHANDRASEKHAR K, STEVANOVIC N, CROSS E J, et al. Damage detection in operational wind turbine blades using a new approach based on machine learning[J]. Renewable Energy, 2021, 168: 1249-1264. [114] BAHAGHIGHAT M, ABEDINI F, XIN Q, et al. Using machine learning and computer vision to estimate the angular velocity of wind turbines in smart grids remotely[J]. Energy Reports, 2021, 7: 8561-8576. |
| [1] | 李淑慧, 蔡伟, 王鑫, 高蔚洁, 狄星雨. 深度学习框架下的红外与可见光图像融合方法综述[J]. 计算机工程与应用, 2025, 61(9): 25-40. |
| [2] | 陈浞, 刘东青, 唐平华, 黄燕, 张文霞, 贾岩, 程海峰. 面向目标检测的物理对抗攻击研究进展[J]. 计算机工程与应用, 2025, 61(9): 80-101. |
| [3] | 王婧, 李云霞. NS-FEDformer模型对股票收益率的预测研究[J]. 计算机工程与应用, 2025, 61(9): 334-342. |
| [4] | 甄彤, 张威振, 李智慧. 遥感影像中种植作物结构分类方法综述[J]. 计算机工程与应用, 2025, 61(8): 35-48. |
| [5] | 李仝伟, 仇大伟, 刘静, 逯英航. 基于RGB与骨骼数据的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(8): 62-82. |
| [6] | 温浩, 杨洋. 融合ERNIE与知识增强的临床短文本分类研究[J]. 计算机工程与应用, 2025, 61(8): 108-116. |
| [7] | 王燕, 卢鹏屹, 他雪. 结合特征融合注意力的规范化卷积图像去雾网络[J]. 计算机工程与应用, 2025, 61(8): 226-238. |
| [8] | 周佳妮, 刘春雨, 刘家鹏. 融合通道与多头注意力的股价趋势预测模型[J]. 计算机工程与应用, 2025, 61(8): 324-338. |
| [9] | 邢素霞, 李珂娴, 方俊泽, 郭正, 赵士杭. 深度学习下的医学图像分割综述[J]. 计算机工程与应用, 2025, 61(7): 25-41. |
| [10] | 陈宇, 权冀川. 伪装目标检测:发展与挑战[J]. 计算机工程与应用, 2025, 61(7): 42-60. |
| [11] | 翟慧英, 郝汉, 李均利, 占志峰. 铁路设施无人机自主巡检算法研究综述[J]. 计算机工程与应用, 2025, 61(7): 61-80. |
| [12] | 梁礼明, 陈康泉, 钟奕, 龙鹏威, 冯耀. DCD-YOLOv8n:一种高效的钢材表面缺陷检测算法[J]. 计算机工程与应用, 2025, 61(7): 117-127. |
| [13] | 韩佰轩, 彭月平, 郝鹤翔, 叶泽聪. DMU-YOLO:机载视觉的多类异常行为检测算法[J]. 计算机工程与应用, 2025, 61(7): 128-140. |
| [14] | 史昕, 王浩泽, 纪艺, 马峻岩. 融合时空特征的多模态车辆轨迹预测方法[J]. 计算机工程与应用, 2025, 61(7): 325-333. |
| [15] | 刘红玉, 高见. 融合CBAM的违法犯罪类安卓恶意软件检测与分类模型研究[J]. 计算机工程与应用, 2025, 61(6): 317-327. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||